Modal Logic for Philosophers

Modal Logic for Philosophers
Author: James W. Garson
Publisher: Cambridge University Press
Total Pages: 429
Release: 2006-08-14
Genre: Mathematics
ISBN: 0521682290

This 2006 book provides an accessible, yet technically sound treatment of modal logic and its philosophical applications.

Introductory Modal Logic

Introductory Modal Logic
Author: Kenneth Konyndyk
Publisher:
Total Pages: 0
Release: 1986
Genre: Modality (Logic)
ISBN: 9780268011598

Modal logic, developed as an extension of classical propositional logic and first-order quantification theory, integrates the notions of possibility and necessity and necessary implication. Arguments whose understanding depends on some fundamental knowledge of modal logic have always been important in philosophy of religion, metaphysics, and epistemology. Moreover, modal logic has become increasingly important with the use of the concept of "possible worlds" in these areas. Introductory Modal Logic fills the need for a basic text on modal logic, accessible to students of elementary symbolic logic. Kenneth Konyndyk presents a natural deduction treatment of propositional modal logic and quantified modal logic, historical information about its development, and discussions of the philosophical issues raised by modal logic. Characterized by clear and concrete explanations, appropriate examples, and varied and challenging exercises, Introductory Modal Logic makes both modal logic and the possible-worlds metaphysics readily available to the introductory level student.

Modal Logic

Modal Logic
Author: Nino B. Cocchiarella
Publisher: Oxford University Press
Total Pages: 288
Release: 2008-08-04
Genre: Philosophy
ISBN: 0190451203

In this text, a variety of modal logics at the sentential, first-order, and second-order levels are developed with clarity, precision and philosophical insight. All of the S1-S5 modal logics of Lewis and Langford, among others, are constructed. A matrix, or many-valued semantics, for sentential modal logic is formalized, and an important result that no finite matrix can characterize any of the standard modal logics is proven. Exercises, some of which show independence results, help to develop logical skills. A separate sentential modal logic of logical necessity in logical atomism is also constructed and shown to be complete and decidable. On the first-order level of the logic of logical necessity, the modal thesis of anti-essentialism is valid and every de re sentence is provably equivalent to a de dicto sentence. An elegant extension of the standard sentential modal logics into several first-order modal logics is developed. Both a first-order modal logic for possibilism containing actualism as a proper part as well as a separate modal logic for actualism alone are constructed for a variety of modal systems. Exercises on this level show the connections between modal laws and quantifier logic regarding generalization into, or out of, modal contexts and the conditions required for the necessity of identity and non-identity. Two types of second-order modal logics, one possibilist and the other actualist, are developed based on a distinction between existence-entailing concepts and concepts in general. The result is a deeper second-order analysis of possibilism and actualism as ontological frameworks. Exercises regarding second-order predicate quantifiers clarify the distinction between existence-entailing concepts and concepts in general. Modal Logic is ideally suited as a core text for graduate and undergraduate courses in modal logic, and as supplementary reading in courses on mathematical logic, formal ontology, and artificial intelligence.

Many-Dimensional Modal Logics: Theory and Applications

Many-Dimensional Modal Logics: Theory and Applications
Author: A. Kurucz
Publisher: Elsevier
Total Pages: 767
Release: 2003-10-21
Genre: Computers
ISBN: 008053578X

Modal logics, originally conceived in philosophy, have recently found many applications in computer science, artificial intelligence, the foundations of mathematics, linguistics and other disciplines. Celebrated for their good computational behaviour, modal logics are used as effective formalisms for talking about time, space, knowledge, beliefs, actions, obligations, provability, etc. However, the nice computational properties can drastically change if we combine some of these formalisms into a many-dimensional system, say, to reason about knowledge bases developing in time or moving objects.To study the computational behaviour of many-dimensional modal logics is the main aim of this book. On the one hand, it is concerned with providing a solid mathematical foundation for this discipline, while on the other hand, it shows that many seemingly different applied many-dimensional systems (e.g., multi-agent systems, description logics with epistemic, temporal and dynamic operators, spatio-temporal logics, etc.) fit in perfectly with this theoretical framework, and so their computational behaviour can be analyzed using the developed machinery.We start with concrete examples of applied one- and many-dimensional modal logics such as temporal, epistemic, dynamic, description, spatial logics, and various combinations of these. Then we develop a mathematical theory for handling a spectrum of 'abstract' combinations of modal logics - fusions and products of modal logics, fragments of first-order modal and temporal logics - focusing on three major problems: decidability, axiomatizability, and computational complexity. Besides the standard methods of modal logic, the technical toolkit includes the method of quasimodels, mosaics, tilings, reductions to monadic second-order logic, algebraic logic techniques. Finally, we apply the developed machinery and obtained results to three case studies from the field of knowledge representation and reasoning: temporal epistemic logics for reasoning about multi-agent systems, modalized description logics for dynamic ontologies, and spatio-temporal logics.The genre of the book can be defined as a research monograph. It brings the reader to the front line of current research in the field by showing both recent achievements and directions of future investigations (in particular, multiple open problems). On the other hand, well-known results from modal and first-order logic are formulated without proofs and supplied with references to accessible sources.The intended audience of this book is logicians as well as those researchers who use logic in computer science and artificial intelligence. More specific application areas are, e.g., knowledge representation and reasoning, in particular, terminological, temporal and spatial reasoning, or reasoning about agents. And we also believe that researchers from certain other disciplines, say, temporal and spatial databases or geographical information systems, will benefit from this book as well.Key Features:• Integrated approach to modern modal and temporal logics and their applications in artificial intelligence and computer science• Written by internationally leading researchers in the field of pure and applied logic• Combines mathematical theory of modal logic and applications in artificial intelligence and computer science• Numerous open problems for further research• Well illustrated with pictures and tables

First-Order Modal Logic

First-Order Modal Logic
Author: M. Fitting
Publisher: Springer Science & Business Media
Total Pages: 300
Release: 2012-12-06
Genre: Philosophy
ISBN: 9401152926

This is a thorough treatment of first-order modal logic. The book covers such issues as quantification, equality (including a treatment of Frege's morning star/evening star puzzle), the notion of existence, non-rigid constants and function symbols, predicate abstraction, the distinction between nonexistence and nondesignation, and definite descriptions, borrowing from both Fregean and Russellian paradigms.

Modal Logic as Metaphysics

Modal Logic as Metaphysics
Author: Timothy Williamson
Publisher: Oxford University Press
Total Pages: 481
Release: 2013-03-28
Genre: Philosophy
ISBN: 019955207X

Timothy Williamson gives an original and provocative treatment of deep metaphysical questions about existence, contingency, and change, using the latest resources of quantified modal logic. Contrary to the widespread assumption that logic and metaphysics are disjoint, he argues that modal logic provides a structural core for metaphysics.

Modal Logic for Open Minds

Modal Logic for Open Minds
Author: Johan van Benthem
Publisher:
Total Pages: 402
Release: 2010
Genre: Mathematics
ISBN:

In this work, the author provides an introduction to the field of modal logic, outlining its major ideas and emploring the numerous ways in which various academic fields have adopted it.

Neighborhood Semantics for Modal Logic

Neighborhood Semantics for Modal Logic
Author: Eric Pacuit
Publisher: Springer
Total Pages: 165
Release: 2017-11-15
Genre: Philosophy
ISBN: 3319671499

This book offers a state-of-the-art introduction to the basic techniques and results of neighborhood semantics for modal logic. In addition to presenting the relevant technical background, it highlights both the pitfalls and potential uses of neighborhood models – an interesting class of mathematical structures that were originally introduced to provide a semantics for weak systems of modal logic (the so-called non-normal modal logics). In addition, the book discusses a broad range of topics, including standard modal logic results (i.e., completeness, decidability and definability); bisimulations for neighborhood models and other model-theoretic constructions; comparisons with other semantics for modal logic (e.g., relational models, topological models, plausibility models); neighborhood semantics for first-order modal logic, applications in game theory (coalitional logic and game logic); applications in epistemic logic (logics of evidence and belief); and non-normal modal logics with dynamic modalities. The book can be used as the primary text for seminars on philosophical logic focused on non-normal modal logics; as a supplemental text for courses on modal logic, logic in AI, or philosophical logic (either at the undergraduate or graduate level); or as the primary source for researchers interested in learning about the uses of neighborhood semantics in philosophical logic and game theory.

Modal Logic

Modal Logic
Author: Brian F. Chellas
Publisher: Cambridge University Press
Total Pages: 316
Release: 1980-02-29
Genre: Mathematics
ISBN: 9780521295154

An introductory textbook on modal logic the logic of necessity and possibility.

Handbook of Modal Logic

Handbook of Modal Logic
Author: Patrick Blackburn
Publisher: Elsevier
Total Pages: 1260
Release: 2006-11-03
Genre: Mathematics
ISBN: 9780080466668

The Handbook of Modal Logic contains 20 articles, which collectively introduce contemporary modal logic, survey current research, and indicate the way in which the field is developing. The articles survey the field from a wide variety of perspectives: the underling theory is explored in depth, modern computational approaches are treated, and six major applications areas of modal logic (in Mathematics, Computer Science, Artificial Intelligence, Linguistics, Game Theory, and Philosophy) are surveyed. The book contains both well-written expository articles, suitable for beginners approaching the subject for the first time, and advanced articles, which will help those already familiar with the field to deepen their expertise. Please visit: http://people.uleth.ca/~woods/RedSeriesPromo_WP/PubSLPR.html - Compact modal logic reference - Computational approaches fully discussed - Contemporary applications of modal logic covered in depth