Mining Multimedia and Complex Data

Mining Multimedia and Complex Data
Author: Osmar R. Zaiane
Publisher: Springer Science & Business Media
Total Pages: 294
Release: 2003-10-13
Genre: Computers
ISBN: 3540203052

This book presents a collection of thoroughly refereed revised papers selected from two international workshops on mining complex data: Multimedia Data Mining, MDM/KDD at KDD 2002 and Knowledge Discovery from Multimedia and Complex Data, KDMCD at PAKDD 2002. The 17 revised full papers presented together with a detailed introduction give a coherent survey of the state of the art in the area. Among the topics addressed are mining spatial multimedia data, mining audio data and multimedia support, mining image and video data, frameworks for multimedia mining, multimedia for information retrieval, and applications of multimedia mining.

Data Mining: Concepts and Techniques

Data Mining: Concepts and Techniques
Author: Jiawei Han
Publisher: Elsevier
Total Pages: 740
Release: 2011-06-09
Genre: Computers
ISBN: 0123814804

Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data

Multimedia Data Mining and Knowledge Discovery

Multimedia Data Mining and Knowledge Discovery
Author: Valery A. Petrushin
Publisher: Springer Science & Business Media
Total Pages: 540
Release: 2007-10-20
Genre: Computers
ISBN: 1846287995

This volume provides an overview of multimedia data mining and knowledge discovery and discusses the variety of hot topics in multimedia data mining research. It describes the objectives and current tendencies in multimedia data mining research and their applications. Each part contains an overview of its chapters and leads the reader with a structured approach through the diverse subjects in the field.

Multimedia Mining

Multimedia Mining
Author: Chabane Djeraba
Publisher: Springer Science & Business Media
Total Pages: 258
Release: 2002-11-30
Genre: Computers
ISBN: 9781402072475

Multimedia Mining: A Highway to Intelligent Multimedia Documents brings together experts in digital media content analysis, state-of-art data mining and knowledge discovery in multimedia database systems, knowledge engineers and domain experts from diverse applied disciplines. Multimedia documents are ubiquitous and often required, if not essential, in many applications today. This phenomenon has made multimedia documents widespread and extremely large. There are tools for managing and searching within these collections, but the need for tools to extract hidden useful knowledge embedded within multimedia objects is becoming pressing and central for many decision-making applications. The tools needed today are tools for discovering relationships between objects or segments within multimedia document components, such as classifying images based on their content, extracting patterns in sound, categorizing speech and music, and recognizing and tracking objects in video streams.

Exploring Advances in Interdisciplinary Data Mining and Analytics: New Trends

Exploring Advances in Interdisciplinary Data Mining and Analytics: New Trends
Author: Taniar, David
Publisher: IGI Global
Total Pages: 353
Release: 2011-12-31
Genre: Computers
ISBN: 1613504756

"This book is an updated look at the state of technology in the field of data mining and analytics offering the latest technological, analytical, ethical, and commercial perspectives on topics in data mining"--Provided by publisher.

Data Mining, Southeast Asia Edition

Data Mining, Southeast Asia Edition
Author: Jiawei Han
Publisher: Elsevier
Total Pages: 772
Release: 2006-04-06
Genre: Computers
ISBN: 0080475582

Our ability to generate and collect data has been increasing rapidly. Not only are all of our business, scientific, and government transactions now computerized, but the widespread use of digital cameras, publication tools, and bar codes also generate data. On the collection side, scanned text and image platforms, satellite remote sensing systems, and the World Wide Web have flooded us with a tremendous amount of data. This explosive growth has generated an even more urgent need for new techniques and automated tools that can help us transform this data into useful information and knowledge. Like the first edition, voted the most popular data mining book by KD Nuggets readers, this book explores concepts and techniques for the discovery of patterns hidden in large data sets, focusing on issues relating to their feasibility, usefulness, effectiveness, and scalability. However, since the publication of the first edition, great progress has been made in the development of new data mining methods, systems, and applications. This new edition substantially enhances the first edition, and new chapters have been added to address recent developments on mining complex types of data— including stream data, sequence data, graph structured data, social network data, and multi-relational data. - A comprehensive, practical look at the concepts and techniques you need to know to get the most out of real business data - Updates that incorporate input from readers, changes in the field, and more material on statistics and machine learning - Dozens of algorithms and implementation examples, all in easily understood pseudo-code and suitable for use in real-world, large-scale data mining projects - Complete classroom support for instructors at www.mkp.com/datamining2e companion site

Research and Trends in Data Mining Technologies and Applications

Research and Trends in Data Mining Technologies and Applications
Author: Taniar, David
Publisher: IGI Global
Total Pages: 340
Release: 2006-10-31
Genre: Computers
ISBN: 1599042738

Activities in data warehousing and mining are constantly emerging. Data mining methods, algorithms, online analytical processes, data mart and practical issues consistently evolve, providing a challenge for professionals in the field. Research and Trends in Data Mining Technologies and Applications focuses on the integration between the fields of data warehousing and data mining, with emphasis on the applicability to real-world problems. This book provides an international perspective, highlighting solutions to some of researchers' toughest challenges. Developments in the knowledge discovery process, data models, structures, and design serve as answers and solutions to these emerging challenges.

Successes and New Directions in Data Mining

Successes and New Directions in Data Mining
Author: Poncelet, Pascal
Publisher: IGI Global
Total Pages: 386
Release: 2007-10-31
Genre: Computers
ISBN: 1599046474

The problem of mining patterns is becoming a very active research area and efficient techniques have been widely applied to problems in industry, government, and science. From the initial definition and motivated by real-applications, the problem of mining patterns not only addresses the finding of itemsets but also more and more complex patterns. Successes and New Directions in Data Mining addresses existing solutions for data mining, with particular emphasis on potential real-world applications. Capturing defining research on topics such as fuzzy set theory, clustering algorithms, semi-supervised clustering, modeling and managing data mining patterns, and sequence motif mining, this book is an indispensable resource for library collections.

Encyclopedia of Data Warehousing and Mining

Encyclopedia of Data Warehousing and Mining
Author: Wang, John
Publisher: IGI Global
Total Pages: 1382
Release: 2005-06-30
Genre: Computers
ISBN: 1591405599

Data Warehousing and Mining (DWM) is the science of managing and analyzing large datasets and discovering novel patterns and in recent years has emerged as a particularly exciting and industrially relevant area of research. Prodigious amounts of data are now being generated in domains as diverse as market research, functional genomics and pharmaceuticals; intelligently analyzing these data, with the aim of answering crucial questions and helping make informed decisions, is the challenge that lies ahead. The Encyclopedia of Data Warehousing and Mining provides a comprehensive, critical and descriptive examination of concepts, issues, trends, and challenges in this rapidly expanding field of data warehousing and mining (DWM). This encyclopedia consists of more than 350 contributors from 32 countries, 1,800 terms and definitions, and more than 4,400 references. This authoritative publication offers in-depth coverage of evolutions, theories, methodologies, functionalities, and applications of DWM in such interdisciplinary industries as healthcare informatics, artificial intelligence, financial modeling, and applied statistics, making it a single source of knowledge and latest discoveries in the field of DWM.

Advanced Methods for Knowledge Discovery from Complex Data

Advanced Methods for Knowledge Discovery from Complex Data
Author: Ujjwal Maulik
Publisher: Springer Science & Business Media
Total Pages: 375
Release: 2006-05-06
Genre: Computers
ISBN: 1846282845

The growth in the amount of data collected and generated has exploded in recent times with the widespread automation of various day-to-day activities, advances in high-level scienti?c and engineering research and the development of e?cient data collection tools. This has given rise to the need for automa- callyanalyzingthedatainordertoextractknowledgefromit,therebymaking the data potentially more useful. Knowledge discovery and data mining (KDD) is the process of identifying valid, novel, potentially useful and ultimately understandable patterns from massive data repositories. It is a multi-disciplinary topic, drawing from s- eral ?elds including expert systems, machine learning, intelligent databases, knowledge acquisition, case-based reasoning, pattern recognition and stat- tics. Many data mining systems have typically evolved around well-organized database systems (e.g., relational databases) containing relevant information. But, more and more, one ?nds relevant information hidden in unstructured text and in other complex forms. Mining in the domains of the world-wide web, bioinformatics, geoscienti?c data, and spatial and temporal applications comprise some illustrative examples in this regard. Discovery of knowledge, or potentially useful patterns, from such complex data often requires the - plication of advanced techniques that are better able to exploit the nature and representation of the data. Such advanced methods include, among o- ers, graph-based and tree-based approaches to relational learning, sequence mining, link-based classi?cation, Bayesian networks, hidden Markov models, neural networks, kernel-based methods, evolutionary algorithms, rough sets and fuzzy logic, and hybrid systems. Many of these methods are developed in the following chapters.