Milestones in Matrix Computation : The selected works of Gene H. Golub with commentaries

Milestones in Matrix Computation : The selected works of Gene H. Golub with commentaries
Author: Raymond Chan
Publisher: OUP Oxford
Total Pages: 584
Release: 2007-02-22
Genre: Mathematics
ISBN: 9780199206810

The text presents and discusses some of the most influential papers in Matrix Computation authored by Gene H. Golub, one of the founding fathers of the field. The collection of 21 papers is divided into five main areas: iterative methods for linear systems, solution of least squares problems, matrix factorizations and applications, orthogonal polynomials and quadrature, and eigenvalue problems. Commentaries for each area are provided by leading experts: Anne Greenbaum, Ake Bjorck, Nicholas Higham, Walter Gautschi, and G. W. (Pete) Stewart. Comments on each paper are also included by the original authors, providing the reader with historical information on how the paper came to be written and under what circumstances the collaboration was undertaken. Including a brief biography and facsimiles of the original papers, this text will be of great interest to students and researchers in numerical analysis and scientific computation.

Milestones in Matrix Computation

Milestones in Matrix Computation
Author: Gene Howard Golub
Publisher: Oxford University Press
Total Pages: 581
Release: 2007-02-22
Genre: Mathematics
ISBN: 0199206813

The text presents and discusses some of the most influential papers in Matrix Computation authored by Gene H. Golub, one of the founding fathers of the field. Including commentaries by leading experts and a brief biography, this text will be of great interest to students and researchers in numerical analysis and scientific computation.

Matrix Computations

Matrix Computations
Author: Gene H. Golub
Publisher: JHU Press
Total Pages: 781
Release: 2013-02-15
Genre: Mathematics
ISBN: 1421408597

A comprehensive treatment of numerical linear algebra from the standpoint of both theory and practice. The fourth edition of Gene H. Golub and Charles F. Van Loan's classic is an essential reference for computational scientists and engineers in addition to researchers in the numerical linear algebra community. Anyone whose work requires the solution to a matrix problem and an appreciation of its mathematical properties will find this book to be an indispensible tool. This revision is a cover-to-cover expansion and renovation of the third edition. It now includes an introduction to tensor computations and brand new sections on • fast transforms • parallel LU • discrete Poisson solvers • pseudospectra • structured linear equation problems • structured eigenvalue problems • large-scale SVD methods • polynomial eigenvalue problems Matrix Computations is packed with challenging problems, insightful derivations, and pointers to the literature—everything needed to become a matrix-savvy developer of numerical methods and software. The second most cited math book of 2012 according to MathSciNet, the book has placed in the top 10 for since 2005.

Numerical Methods in Matrix Computations

Numerical Methods in Matrix Computations
Author: Åke Björck
Publisher: Springer
Total Pages: 812
Release: 2014-10-07
Genre: Mathematics
ISBN: 3319050893

Matrix algorithms are at the core of scientific computing and are indispensable tools in most applications in engineering. This book offers a comprehensive and up-to-date treatment of modern methods in matrix computation. It uses a unified approach to direct and iterative methods for linear systems, least squares and eigenvalue problems. A thorough analysis of the stability, accuracy, and complexity of the treated methods is given. Numerical Methods in Matrix Computations is suitable for use in courses on scientific computing and applied technical areas at advanced undergraduate and graduate level. A large bibliography is provided, which includes both historical and review papers as well as recent research papers. This makes the book useful also as a reference and guide to further study and research work.

Functions of Matrices

Functions of Matrices
Author: Nicholas J. Higham
Publisher: SIAM
Total Pages: 431
Release: 2008-09-11
Genre: Mathematics
ISBN: 0898716462

“This superb book is timely and is written with great attention paid to detail, particularly in its referencing of the literature. The book has a wonderful blend of theory and code (MATLAB®) so will be useful both to nonexperts and to experts in the field.” — Alan Laub, Professor, University of California, Los Angeles The only book devoted exclusively to matrix functions, this research monograph gives a thorough treatment of the theory of matrix functions and numerical methods for computing them. The author's elegant presentation focuses on the equivalent definitions of f(A) via the Jordan canonical form, polynomial interpolation, and the Cauchy integral formula, and features an emphasis on results of practical interest and an extensive collection of problems and solutions. Functions of Matrices: Theory and Computation is more than just a monograph on matrix functions; its wide-ranging content—including an overview of applications, historical references, and miscellaneous results, tricks, and techniques with an f(A) connection—makes it useful as a general reference in numerical linear algebra.Other key features of the book include development of the theory of conditioning and properties of the Fréchet derivative; an emphasis on the Schur decomposition, the block Parlett recurrence, and judicious use of Padé approximants; the inclusion of new, unpublished research results and improved algorithms; a chapter devoted to the f(A)b problem; and a MATLAB® toolbox providing implementations of the key algorithms.Audience: This book is for specialists in numerical analysis and applied linear algebra as well as anyone wishing to learn about the theory of matrix functions and state of the art methods for computing them. It can be used for a graduate-level course on functions of matrices and is a suitable reference for an advanced course on applied or numerical linear algebra. It is also particularly well suited for self-study. Contents: List of Figures; List of Tables; Preface; Chapter 1: Theory of Matrix Functions; Chapter 2: Applications; Chapter 3: Conditioning; Chapter 4: Techniques for General Functions; Chapter 5: Matrix Sign Function; Chapter 6: Matrix Square Root; Chapter 7: Matrix pth Root; Chapter 8: The Polar Decomposition; Chapter 9: Schur-Parlett Algorithm; Chapter 10: Matrix Exponential; Chapter 11: Matrix Logarithm; Chapter 12: Matrix Cosine and Sine; Chapter 13: Function of Matrix Times Vector: f(A)b; Chapter 14: Miscellany; Appendix A: Notation; Appendix B: Background: Definitions and Useful Facts; Appendix C: Operation Counts; Appendix D: Matrix Function Toolbox; Appendix E: Solutions to Problems; Bibliography; Index.

Krylov Subspace Methods

Krylov Subspace Methods
Author: Jörg Liesen
Publisher: OUP Oxford
Total Pages: 408
Release: 2012-10-18
Genre: Mathematics
ISBN: 0191630322

The mathematical theory of Krylov subspace methods with a focus on solving systems of linear algebraic equations is given a detailed treatment in this principles-based book. Starting from the idea of projections, Krylov subspace methods are characterised by their orthogonality and minimisation properties. Projections onto highly nonlinear Krylov subspaces can be linked with the underlying problem of moments, and therefore Krylov subspace methods can be viewed as matching moments model

Matrices, Moments and Quadrature with Applications

Matrices, Moments and Quadrature with Applications
Author: Gene H. Golub
Publisher: Princeton University Press
Total Pages: 376
Release: 2009-12-07
Genre: Mathematics
ISBN: 1400833884

This computationally oriented book describes and explains the mathematical relationships among matrices, moments, orthogonal polynomials, quadrature rules, and the Lanczos and conjugate gradient algorithms. The book bridges different mathematical areas to obtain algorithms to estimate bilinear forms involving two vectors and a function of the matrix. The first part of the book provides the necessary mathematical background and explains the theory. The second part describes the applications and gives numerical examples of the algorithms and techniques developed in the first part. Applications addressed in the book include computing elements of functions of matrices; obtaining estimates of the error norm in iterative methods for solving linear systems and computing parameters in least squares and total least squares; and solving ill-posed problems using Tikhonov regularization. This book will interest researchers in numerical linear algebra and matrix computations, as well as scientists and engineers working on problems involving computation of bilinear forms.

100 Years of Math Milestones: The Pi Mu Epsilon Centennial Collection

100 Years of Math Milestones: The Pi Mu Epsilon Centennial Collection
Author: Stephan Ramon Garcia
Publisher: American Mathematical Soc.
Total Pages: 597
Release: 2019-06-13
Genre: Mathematics
ISBN: 1470436523

This book is an outgrowth of a collection of 100 problems chosen to celebrate the 100th anniversary of the undergraduate math honor society Pi Mu Epsilon. Each chapter describes a problem or event, the progress made, and connections to entries from other years or other parts of mathematics. In places, some knowledge of analysis or algebra, number theory or probability will be helpful. Put together, these problems will be appealing and accessible to energetic and enthusiastic math majors and aficionados of all stripes. Stephan Ramon Garcia is WM Keck Distinguished Service Professor and professor of mathematics at Pomona College. He is the author of four books and over eighty research articles in operator theory, complex analysis, matrix analysis, number theory, discrete geometry, and other fields. He has coauthored dozens of articles with students, including one that appeared in The Best Writing on Mathematics: 2015. He is on the editorial boards of Notices of the AMS, Proceedings of the AMS, American Mathematical Monthly, Involve, and Annals of Functional Analysis. He received four NSF research grants as principal investigator and five teaching awards from three different institutions. He is a fellow of the American Mathematical Society and was the inaugural recipient of the Society's Dolciani Prize for Excellence in Research. Steven J. Miller is professor of mathematics at Williams College and a visiting assistant professor at Carnegie Mellon University. He has published five books and over one hundred research papers, most with students, in accounting, computer science, economics, geophysics, marketing, mathematics, operations research, physics, sabermetrics, and statistics. He has served on numerous editorial boards, including the Journal of Number Theory, Notices of the AMS, and the Pi Mu Epsilon Journal. He is active in enrichment and supplemental curricular initiatives for elementary and secondary mathematics, from the Teachers as Scholars Program and VCTAL (Value of Computational Thinking Across Grade Levels), to numerous math camps (the Eureka Program, HCSSiM, the Mathematics League International Summer Program, PROMYS, and the Ross Program). He is a fellow of the American Mathematical Society, an at-large senator for Phi Beta Kappa, and a member of the Mount Greylock Regional School Committee, where he sees firsthand the challenges of applying mathematics.

Computational Approaches for Understanding Dynamical Systems: Protein Folding and Assembly

Computational Approaches for Understanding Dynamical Systems: Protein Folding and Assembly
Author:
Publisher: Academic Press
Total Pages: 552
Release: 2020-03-04
Genre: Science
ISBN: 0128211350

Computational Approaches for Understanding Dynamical Systems: Protein Folding and Assembly, Volume 170 in the Progress in Molecular Biology and Translational Science series, provides the most topical, informative and exciting monographs available on a wide variety of research topics. The series includes in-depth knowledge on the molecular biological aspects of organismal physiology, with this release including chapters on Pairwise-Additive and Polarizable Atomistic Force Fields for Molecular Dynamics Simulations of Proteins, Scale-consistent approach to the derivation of coarse-grained force fields for simulating structure, dynamics, and thermodynamics of biopolymers, Enhanced sampling and free energy methods, and much more.

Parallelism in Matrix Computations

Parallelism in Matrix Computations
Author: Efstratios Gallopoulos
Publisher: Springer
Total Pages: 489
Release: 2015-07-25
Genre: Technology & Engineering
ISBN: 940177188X

This book is primarily intended as a research monograph that could also be used in graduate courses for the design of parallel algorithms in matrix computations. It assumes general but not extensive knowledge of numerical linear algebra, parallel architectures, and parallel programming paradigms. The book consists of four parts: (I) Basics; (II) Dense and Special Matrix Computations; (III) Sparse Matrix Computations; and (IV) Matrix functions and characteristics. Part I deals with parallel programming paradigms and fundamental kernels, including reordering schemes for sparse matrices. Part II is devoted to dense matrix computations such as parallel algorithms for solving linear systems, linear least squares, the symmetric algebraic eigenvalue problem, and the singular-value decomposition. It also deals with the development of parallel algorithms for special linear systems such as banded ,Vandermonde ,Toeplitz ,and block Toeplitz systems. Part III addresses sparse matrix computations: (a) the development of parallel iterative linear system solvers with emphasis on scalable preconditioners, (b) parallel schemes for obtaining a few of the extreme eigenpairs or those contained in a given interval in the spectrum of a standard or generalized symmetric eigenvalue problem, and (c) parallel methods for computing a few of the extreme singular triplets. Part IV focuses on the development of parallel algorithms for matrix functions and special characteristics such as the matrix pseudospectrum and the determinant. The book also reviews the theoretical and practical background necessary when designing these algorithms and includes an extensive bibliography that will be useful to researchers and students alike. The book brings together many existing algorithms for the fundamental matrix computations that have a proven track record of efficient implementation in terms of data locality and data transfer on state-of-the-art systems, as well as several algorithms that are presented for the first time, focusing on the opportunities for parallelism and algorithm robustness.