Advances in Microlocal and Time-Frequency Analysis

Advances in Microlocal and Time-Frequency Analysis
Author: Paolo Boggiatto
Publisher: Springer Nature
Total Pages: 533
Release: 2020-03-03
Genre: Mathematics
ISBN: 3030361381

The present volume gathers contributions to the conference Microlocal and Time-Frequency Analysis 2018 (MLTFA18), which was held at Torino University from the 2nd to the 6th of July 2018. The event was organized in honor of Professor Luigi Rodino on the occasion of his 70th birthday. The conference’s focus and the contents of the papers reflect Luigi’s various research interests in the course of his long and extremely prolific career at Torino University.

Time-Frequency Analysis of Operators

Time-Frequency Analysis of Operators
Author: Elena Cordero
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 458
Release: 2020-09-21
Genre: Mathematics
ISBN: 311053245X

This authoritative text studies pseudodifferential and Fourier integral operators in the framework of time-frequency analysis, providing an elementary approach, along with applications to almost diagonalization of such operators and to the sparsity of their Gabor representations. Moreover, Gabor frames and modulation spaces are employed to study dispersive equations such as the Schrödinger, wave, and heat equations and related Strichartz problems. The first part of the book is addressed to non-experts, presenting the basics of time-frequency analysis: short time Fourier transform, Wigner distribution and other representations, function spaces and frames theory, and it can be read independently as a short text-book on this topic from graduate and under-graduate students, or scholars in other disciplines.

Landscapes of Time-Frequency Analysis

Landscapes of Time-Frequency Analysis
Author: Paolo Boggiatto
Publisher: Springer Nature
Total Pages: 208
Release: 2020-11-21
Genre: Mathematics
ISBN: 3030560058

This contributed volume features chapters based on talks given at the second international conference titled Aspects of Time-Frequency Analysis (ATFA 19), held at Politecnico di Torino from June 25th to June 27th, 2019. Written by experts in harmonic analysis and its applications, these chapters provide a valuable overview of the state-of-the-art of this active area of research. New results are collected as well, making this a valuable resource for readers seeking to be brought up-to-date. Topics covered include: Signal analysis Quantum theory Modulation space theory Applications to the medical industry Wavelet transform theory Anti-Wick operators Landscapes of Time-Frequency Analysis: ATFA 2019 will be of particular interest to researchers and advanced students working in time-frequency analysis and other related areas of harmonic analysis.

Microlocal Analysis for Differential Operators

Microlocal Analysis for Differential Operators
Author: Alain Grigis
Publisher: Cambridge University Press
Total Pages: 164
Release: 1994-03-03
Genre: Mathematics
ISBN: 9780521449861

This book corresponds to a graduate course given many times by the authors, and should prove to be useful to mathematicians and theoretical physicists.

Excursions in Harmonic Analysis, Volume 6

Excursions in Harmonic Analysis, Volume 6
Author: Matthew Hirn
Publisher: Springer Nature
Total Pages: 444
Release: 2021-09-01
Genre: Mathematics
ISBN: 3030696375

John J. Benedetto has had a profound influence not only on the direction of harmonic analysis and its applications, but also on the entire community of people involved in the field. The chapters in this volume – compiled on the occasion of his 80th birthday – are written by leading researchers in the field and pay tribute to John’s many significant and lasting achievements. Covering a wide range of topics in harmonic analysis and related areas, these chapters are organized into four main parts: harmonic analysis, wavelets and frames, sampling and signal processing, and compressed sensing and optimization. An introductory chapter also provides a brief overview of John’s life and mathematical career. This volume will be an excellent reference for graduate students, researchers, and professionals in pure and applied mathematics, engineering, and physics.

The Localization Problem in Index Theory of Elliptic Operators

The Localization Problem in Index Theory of Elliptic Operators
Author: Vladimir Nazaikinskii
Publisher: Springer Science & Business Media
Total Pages: 122
Release: 2013-11-26
Genre: Mathematics
ISBN: 3034805101

The book deals with the localization approach to the index problem for elliptic operators. Localization ideas have been widely used for solving various specific index problems for a long time, but the fact that there is actually a fundamental localization principle underlying all these solutions has mostly passed unnoticed. The ignorance of this general principle has often necessitated using various artificial tricks and hindered the solution of new important problems in index theory. So far, the localization principle has been only scarcely covered in journal papers and not covered at all in monographs. The suggested book is intended to fill the gap. So far, it is the first and only monograph dealing with the topic. Both the general localization principle and its applications to specific problems, existing and new, are covered. The book will be of interest to working mathematicians as well as graduate and postgraduate university students specializing in differential equations and related topics.​

Global Pseudo-differential Calculus on Euclidean Spaces

Global Pseudo-differential Calculus on Euclidean Spaces
Author: Fabio Nicola
Publisher: Springer Science & Business Media
Total Pages: 309
Release: 2011-01-30
Genre: Mathematics
ISBN: 376438512X

This book presents a global pseudo-differential calculus in Euclidean spaces, which includes SG as well as Shubin classes and their natural generalizations containing Schroedinger operators with non-polynomial potentials. This calculus is applied to study global hypoellipticity for several pseudo-differential operators. The book includes classic calculus as a special case. It will be accessible to graduate students and of benefit to researchers in PDEs and mathematical physics.

Solvable Algebras of Pseudodifferential Operators

Solvable Algebras of Pseudodifferential Operators
Author: Boris Plamenevskii
Publisher: Springer Nature
Total Pages: 249
Release: 2023-05-04
Genre: Mathematics
ISBN: 3031283988

This book presents original research results on pseudodifferential operators. C*-algebras generated by pseudodifferential operators with piecewise smooth symbols on a smooth manifold are considered. For each algebra, all the equivalence classes of irreducible representations are listed; as a consequence, a criterion for a pseudodifferential operator to be Fredholm is stated, the topology on the spectrum is described, and a solving series is constructed. Pseudodifferential operators on manifolds with edges are introduced, their properties are considered in details, and an algebra generated by the operators is studied. An introductory chapter includes all necessary preliminaries from the theory of pseudodifferential operators and C*-algebras.

Pseudodifferential Methods in Number Theory

Pseudodifferential Methods in Number Theory
Author: André Unterberger
Publisher: Birkhäuser
Total Pages: 175
Release: 2018-07-16
Genre: Mathematics
ISBN: 3319927078

Classically developed as a tool for partial differential equations, the analysis of operators known as pseudodifferential analysis is here regarded as a possible help in questions of arithmetic. The operators which make up the main subject of the book can be characterized in terms of congruence arithmetic. They enjoy a Eulerian structure, and are applied to the search for new conditions equivalent to the Riemann hypothesis. These consist in the validity of certain parameter-dependent estimates for a class of Hermitian forms of finite rank. The Littlewood criterion, involving sums of Möbius coefficients, and the Weil so-called explicit formula, which leads to his positivity criterion, fit within this scheme, using in the first case Weyl's pseudodifferential calculus, in the second case Fuchs'. The book should be of interest to people looking for new possible approaches to the Riemann hypothesis, also to new perspectives on pseudodifferential analysis and on the way it combines with modular form theory. Analysts will have no difficulty with the arithmetic aspects, with which, save for very few exceptions, no previous acquaintance is necessary.

Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators

Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators
Author: Nicolas Lerner
Publisher: Springer Science & Business Media
Total Pages: 408
Release: 2011-01-30
Genre: Mathematics
ISBN: 3764385103

This book is devoted to the study of pseudo-di?erential operators, with special emphasis on non-selfadjoint operators, a priori estimates and localization in the phase space. We have tried here to expose the most recent developments of the theory with its applications to local solvability and semi-classical estimates for non-selfadjoint operators. The?rstchapter,Basic Notions of Phase Space Analysis,isintroductoryand gives a presentation of very classical classes of pseudo-di?erential operators, along with some basic properties. As an illustration of the power of these methods, we give a proof of propagation of singularities for real-principal type operators (using aprioriestimates,andnotFourierintegraloperators),andweintroducethereader to local solvability problems. That chapter should be useful for a reader, say at the graduate level in analysis, eager to learn some basics on pseudo-di?erential operators. The second chapter, Metrics on the Phase Space begins with a review of symplectic algebra, Wigner functions, quantization formulas, metaplectic group and is intended to set the basic study of the phase space. We move forward to the more general setting of metrics on the phase space, following essentially the basic assumptions of L. H ̈ ormander (Chapter 18 in the book [73]) on this topic.