Microlocal Analysis, Sharp Spectral Asymptotics and Applications V

Microlocal Analysis, Sharp Spectral Asymptotics and Applications V
Author: Victor Ivrii
Publisher: Springer Nature
Total Pages: 761
Release: 2019-09-13
Genre: Mathematics
ISBN: 3030305619

The prime goal of this monograph, which comprises a total of five volumes, is to derive sharp spectral asymptotics for broad classes of partial differential operators using techniques from semiclassical microlocal analysis, in particular, propagation of singularities, and to subsequently use the variational estimates in “small” domains to consider domains with singularities of different kinds. In turn, the general theory (results and methods developed) is applied to the Magnetic Schrödinger operator, miscellaneous problems, and multiparticle quantum theory. In this volume the methods developed in Volumes I, II, III and IV are applied to multiparticle quantum theory (asymptotics of the ground state energy and related problems), and to miscellaneous spectral problems.

Microlocal Analysis, Sharp Spectral Asymptotics and Applications III

Microlocal Analysis, Sharp Spectral Asymptotics and Applications III
Author: Victor Ivrii
Publisher: Springer Nature
Total Pages: 750
Release: 2019-09-12
Genre: Mathematics
ISBN: 3030305376

The prime goal of this monograph, which comprises a total of five volumes, is to derive sharp spectral asymptotics for broad classes of partial differential operators using techniques from semiclassical microlocal analysis, in particular, propagation of singularities, and to subsequently use the variational estimates in “small” domains to consider domains with singularities of different kinds. In turn, the general theory (results and methods developed) is applied to the Magnetic Schrödinger operator, miscellaneous problems, and multiparticle quantum theory. In this volume the methods developed in Volumes I and II are applied to the Schrödinger and Dirac operators in smooth settings in dimensions 2 and 3.

Microlocal Analysis, Sharp Spectral Asymptotics and Applications I

Microlocal Analysis, Sharp Spectral Asymptotics and Applications I
Author: Victor Ivrii
Publisher: Springer Nature
Total Pages: 938
Release: 2019-09-12
Genre: Mathematics
ISBN: 3030305570

The prime goal of this monograph, which comprises a total of five volumes, is to derive sharp spectral asymptotics for broad classes of partial differential operators using techniques from semiclassical microlocal analysis, in particular, propagation of singularities, and to subsequently use the variational estimates in “small” domains to consider domains with singularities of different kinds. In turn, the general theory (results and methods developed) is applied to the Magnetic Schrödinger operator, miscellaneous problems, and multiparticle quantum theory. In this volume the general microlocal semiclassical approach is developed, and microlocal and local semiclassical spectral asymptotics are derived.

Microlocal Analysis, Sharp Spectral Asymptotics and Applications II

Microlocal Analysis, Sharp Spectral Asymptotics and Applications II
Author: Victor Ivrii
Publisher: Springer Nature
Total Pages: 544
Release: 2019-09-11
Genre: Mathematics
ISBN: 3030305414

The prime goal of this monograph, which comprises a total of five volumes, is to derive sharp spectral asymptotics for broad classes of partial differential operators using techniques from semiclassical microlocal analysis, in particular, propagation of singularities, and to subsequently use the variational estimates in “small” domains to consider domains with singularities of different kinds. In turn, the general theory (results and methods developed) is applied to the Magnetic Schrödinger operator, miscellaneous problems, and multiparticle quantum theory. In this volume the local spectral asymptotics of Volume I in the regular part of the domain are combined with variational estimates in the vicinity of singularities, and global asymptotics are derived in the general form. They are then applied to multiple cases and asymptotics with respect to a spectral parameter. Finally, cases in which only general methods but not the results can be applied (non-standard asymptotics) are studied.

Microlocal Analysis, Sharp Spectral Asymptotics and Applications IV

Microlocal Analysis, Sharp Spectral Asymptotics and Applications IV
Author: Victor Ivrii
Publisher: Springer Nature
Total Pages: 736
Release: 2019-09-11
Genre: Mathematics
ISBN: 3030305457

The prime goal of this monograph, which comprises a total of five volumes, is to derive sharp spectral asymptotics for broad classes of partial differential operators using techniques from semiclassical microlocal analysis, in particular, propagation of singularities, and to subsequently use the variational estimates in “small” domains to consider domains with singularities of different kinds. In turn, the general theory (results and methods developed) is applied to the Magnetic Schrödinger operator, miscellaneous problems, and multiparticle quantum theory. In this volume the methods developed in Volumes I, II and III are applied to the Schrödinger and Dirac operators in non-smooth settings and in higher dimensions.

Schrödinger Operators: Eigenvalues and Lieb–Thirring Inequalities

Schrödinger Operators: Eigenvalues and Lieb–Thirring Inequalities
Author: Rupert L. Frank
Publisher: Cambridge University Press
Total Pages: 524
Release: 2022-11-17
Genre: Mathematics
ISBN: 1009218441

The analysis of eigenvalues of Laplace and Schrödinger operators is an important and classical topic in mathematical physics with many applications. This book presents a thorough introduction to the area, suitable for masters and graduate students, and includes an ample amount of background material on the spectral theory of linear operators in Hilbert spaces and on Sobolev space theory. Of particular interest is a family of inequalities by Lieb and Thirring on eigenvalues of Schrödinger operators, which they used in their proof of stability of matter. The final part of this book is devoted to the active research on sharp constants in these inequalities and contains state-of-the-art results, serving as a reference for experts and as a starting point for further research.

Differential Equations on Manifolds and Mathematical Physics

Differential Equations on Manifolds and Mathematical Physics
Author: Vladimir M. Manuilov
Publisher: Springer Nature
Total Pages: 349
Release: 2022-01-21
Genre: Mathematics
ISBN: 3030373266

This is a volume originating from the Conference on Partial Differential Equations and Applications, which was held in Moscow in November 2018 in memory of professor Boris Sternin and attracted more than a hundred participants from eighteen countries. The conference was mainly dedicated to partial differential equations on manifolds and their applications in mathematical physics, geometry, topology, and complex analysis. The volume contains selected contributions by leading experts in these fields and presents the current state of the art in several areas of PDE. It will be of interest to researchers and graduate students specializing in partial differential equations, mathematical physics, topology, geometry, and their applications. The readers will benefit from the interplay between these various areas of mathematics.

Geometric Methods in Physics

Geometric Methods in Physics
Author: Piotr Kielanowski
Publisher: Springer
Total Pages: 290
Release: 2014-08-19
Genre: Mathematics
ISBN: 3319062484

The Białowieża Workshops on Geometric Methods in Physics, which are hosted in the unique setting of the Białowieża natural forest in Poland, are among the most important meetings in the field. Every year some 80 to 100 participants from both the mathematics and physics world join to discuss new developments and to exchange ideas. The current volume was produced on the occasion of the 32nd meeting in 2013. It is now becoming a tradition that the Workshop is followed by a School on Geometry and Physics, which consists of advanced lectures for graduate students and young researchers. Selected speakers at the 2013 Workshop were asked to contribute to this book, and their work was supplemented by additional review articles. The selection shows that, despite its now long tradition, the workshop remains at the cutting edge of research. The 2013 Workshop also celebrated the 75th birthday of Daniel Sternheimer, and on this occasion the discussion mainly focused on his contributions to mathematical physics such as deformation quantization, Poisson geometry, symplectic geometry and non-commutative differential geometry.

Recent Advances in Operator Theory, Operator Algebras, and their Applications

Recent Advances in Operator Theory, Operator Algebras, and their Applications
Author: Dumitru Gaspar
Publisher: Springer Science & Business Media
Total Pages: 351
Release: 2006-03-30
Genre: Mathematics
ISBN: 3764373148

This book offers peer-reviewed articles from the 19th International Conference on Operator Theory, Summer 2002. It contains recent developments in a broad range of topics from operator theory, operator algebras and their applications, particularly to differential analysis, complex functions, ergodic theory, mathematical physics, matrix analysis, and systems theory. The book covers a large variety of topics including single operator theory, C*-algebras, diffrential operators, integral transforms, stochastic processes and operators, and more.