Infinite-Dimensional Dynamical Systems

Infinite-Dimensional Dynamical Systems
Author: James C. Robinson
Publisher: Cambridge University Press
Total Pages: 488
Release: 2001-04-23
Genre: Mathematics
ISBN: 9780521632041

This book treats the theory of global attractors, a recent development in the theory of partial differential equations, in a way that also includes much of the traditional elements of the subject. As such it gives a quick but directed introduction to some fundamental concepts, and by the end proceeds to current research problems. Since the subject is relatively new, this is the first book to attempt to treat these various topics in a unified and didactic way. It is intended to be suitable for first year graduate students.

Infinite-Dimensional Dynamical Systems in Mechanics and Physics

Infinite-Dimensional Dynamical Systems in Mechanics and Physics
Author: Roger Temam
Publisher: Springer Science & Business Media
Total Pages: 670
Release: 2013-12-11
Genre: Mathematics
ISBN: 1461206456

In this book the author presents the dynamical systems in infinite dimension, especially those generated by dissipative partial differential equations. This book attempts a systematic study of infinite dimensional dynamical systems generated by dissipative evolution partial differential equations arising in mechanics and physics and in other areas of sciences and technology. This second edition has been updated and extended.

Methods Of Hilbert Spaces In The Theory Of Nonlinear Dynamical Systems

Methods Of Hilbert Spaces In The Theory Of Nonlinear Dynamical Systems
Author: Krzysztof Kowalski
Publisher: World Scientific
Total Pages: 148
Release: 1994-07-26
Genre: Science
ISBN: 9814502057

This book is the first monograph on a new powerful method discovered by the author for the study of nonlinear dynamical systems relying on reduction of nonlinear differential equations to the linear abstract Schrödinger-like equation in Hilbert space. Besides the possibility of unification of many apparently completely different techniques, the “quantal” Hilbert space formalism introduced enables new original methods to be discovered for solving nonlinear problems arising in investigation of ordinary and partial differential equations as well as difference equations. Applications covered in the book include symmetries and first integrals, linearization transformations, Bäcklund transformations, stroboscopic maps, functional equations involving the case of Feigenbaum-Cvitanovic renormalization equations and chaos.

Robust Control Theory in Hilbert Space

Robust Control Theory in Hilbert Space
Author: Avraham Feintuch
Publisher: Springer Science & Business Media
Total Pages: 234
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461205913

An operator theoretic approach to robust control analysis for linear time-varying systems, with the emphasis on the conceptual similarity with the H control theory for time-invariant systems. It clarifies the major difficulties confronted in the time varying case and all the necessary operator theory is developed from first principles, making the book as self-contained as possible. After presenting the necessary results from the theories of Toeplitz operators and nest algebras, linear systems are defined as input-output operators and the relationship between stabilisation and the existence of co-prime factorisations is described. Uniform optimal control problems are formulated as model-matching problems and are reduced to four block problems, while robustness is considered both from the point of view of fractional representations and the "time varying gap" metric, as is the relationship between these types of uncertainties. The book closes with the solution of the orthogonal embedding problem for time-varying contractive systems. As such, this book is useful to both mathematicians and to control engineers.

An Introduction to Functional Analysis

An Introduction to Functional Analysis
Author: James C. Robinson
Publisher: Cambridge University Press
Total Pages: 421
Release: 2020-03-12
Genre: Mathematics
ISBN: 0521899648

Accessible text covering core functional analysis topics in Hilbert and Banach spaces, with detailed proofs and 200 fully-worked exercises.

Infinite Dimensional Optimization and Control Theory

Infinite Dimensional Optimization and Control Theory
Author: Hector O. Fattorini
Publisher: Cambridge University Press
Total Pages: 828
Release: 1999-03-28
Genre: Computers
ISBN: 9780521451253

Treats optimal problems for systems described by ODEs and PDEs, using an approach that unifies finite and infinite dimensional nonlinear programming.

Ergodicity for Infinite Dimensional Systems

Ergodicity for Infinite Dimensional Systems
Author: Giuseppe Da Prato
Publisher: Cambridge University Press
Total Pages: 355
Release: 1996-05-16
Genre: Mathematics
ISBN: 0521579007

This is the only book on stochastic modelling of infinite dimensional dynamical systems.

Optimization by Vector Space Methods

Optimization by Vector Space Methods
Author: David G. Luenberger
Publisher: John Wiley & Sons
Total Pages: 348
Release: 1997-01-23
Genre: Technology & Engineering
ISBN: 9780471181170

Engineers must make decisions regarding the distribution of expensive resources in a manner that will be economically beneficial. This problem can be realistically formulated and logically analyzed with optimization theory. This book shows engineers how to use optimization theory to solve complex problems. Unifies the large field of optimization with a few geometric principles. Covers functional analysis with a minimum of mathematics. Contains problems that relate to the applications in the book.

Inverse Acoustic and Electromagnetic Scattering Theory

Inverse Acoustic and Electromagnetic Scattering Theory
Author: David Colton
Publisher: Springer Science & Business Media
Total Pages: 347
Release: 2013-03-09
Genre: Science
ISBN: 3662035375

This book is devoted to the mathematical and numerical analysis of the inverse scattering problem for acoustic and electromagnetic waves. The second edition includes material on Newton’s method for the inverse obstacle problem, an elegant proof of uniqueness for the inverse medium problem, a discussion of the spectral theory of the far field operator and a method for determining the support of an inhomogeneous medium from far field data.

Weakly Connected Neural Networks

Weakly Connected Neural Networks
Author: Frank C. Hoppensteadt
Publisher: Springer Science & Business Media
Total Pages: 404
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461218284

Devoted to local and global analysis of weakly connected systems with applications to neurosciences, this book uses bifurcation theory and canonical models as the major tools of analysis. It presents a systematic and well motivated development of both weakly connected system theory and mathematical neuroscience, addressing bifurcations in neuron and brain dynamics, synaptic organisations of the brain, and the nature of neural codes. The authors present classical results together with the most recent developments in the field, making this a useful reference for researchers and graduate students in various branches of mathematical neuroscience.