Nonlinear Systems Stability Analysis

Nonlinear Systems Stability Analysis
Author: Seyed Kamaleddin Yadavar Nikravesh
Publisher: CRC Press
Total Pages: 319
Release: 2018-09-03
Genre: Science
ISBN: 1466569298

The equations used to describe dynamic properties of physical systems are often nonlinear, and it is rarely possible to find their solutions. Although numerical solutions are impractical and graphical techniques are not useful for many types of systems, there are different theorems and methods that are useful regarding qualitative properties of nonlinear systems and their solutions—system stability being the most crucial property. Without stability, a system will not have value. Nonlinear Systems Stability Analysis: Lyapunov-Based Approach introduces advanced tools for stability analysis of nonlinear systems. It presents the most recent progress in stability analysis and provides a complete review of the dynamic systems stability analysis methods using Lyapunov approaches. The author discusses standard stability techniques, highlighting their shortcomings, and also describes recent developments in stability analysis that can improve applicability of the standard methods. The text covers mostly new topics such as stability of homogonous nonlinear systems and higher order Lyapunov functions derivatives for stability analysis. It also addresses special classes of nonlinear systems including time-delayed and fuzzy systems. Presenting new methods, this book provides a nearly complete set of methods for constructing Lyapunov functions in both autonomous and nonautonomous systems, touching on new topics that open up novel research possibilities. Gathering a body of research into one volume, this text offers information to help engineers design stable systems using practice-oriented methods and can be used for graduate courses in a range of engineering disciplines.

Stability of Dynamical Systems

Stability of Dynamical Systems
Author:
Publisher: Springer Science & Business Media
Total Pages: 516
Release: 2008
Genre: Differentiable dynamical systems
ISBN: 0817644865

In the analysis and synthesis of contemporary systems, engineers and scientists are frequently confronted with increasingly complex models that may simultaneously include components whose states evolve along continuous time and discrete instants; components whose descriptions may exhibit nonlinearities, time lags, transportation delays, hysteresis effects, and uncertainties in parameters; and components that cannot be described by various classical equations, as in the case of discrete-event systems, logic commands, and Petri nets. The qualitative analysis of such systems requires results for finite-dimensional and infinite-dimensional systems; continuous-time and discrete-time systems; continuous continuous-time and discontinuous continuous-time systems; and hybrid systems involving a mixture of continuous and discrete dynamics. Filling a gap in the literature, this textbook presents the first comprehensive stability analysis of all the major types of system models described above. Throughout the book, the applicability of the developed theory is demonstrated by means of many specific examples and applications to important classes of systems, including digital control systems, nonlinear regulator systems, pulse-width-modulated feedback control systems, artificial neural networks (with and without time delays), digital signal processing, a class of discrete-event systems (with applications to manufacturing and computer load balancing problems) and a multicore nuclear reactor model. The book covers the following four general topics: * Representation and modeling of dynamical systems of the types described above * Presentation of Lyapunov and Lagrange stability theory for dynamical systems defined on general metric spaces * Specialization of this stability theory to finite-dimensional dynamical systems * Specialization of this stability theory to infinite-dimensional dynamical systems Replete with exercises and requiring basic knowledge of linear algebra, analysis, and differential equations, the work may be used as a textbook for graduate courses in stability theory of dynamical systems. The book may also serve as a self-study reference for graduate students, researchers, and practitioners in applied mathematics, engineering, computer science, physics, chemistry, biology, and economics.

Variational and Extremum Principles in Macroscopic Systems

Variational and Extremum Principles in Macroscopic Systems
Author: Stanislaw Sieniutycz
Publisher: Elsevier
Total Pages: 810
Release: 2010-07-07
Genre: Technology & Engineering
ISBN: 0080456146

Recent years have seen a growing trend to derive models of macroscopic phenomena encountered in the fields of engineering, physics, chemistry, ecology, self-organisation theory and econophysics from various variational or extremum principles. Through the link between the integral extremum of a functional and the local extremum of a function (explicit, for example, in the Pontryagin's maximum principle variational and extremum principles are mutually related. Thus it makes sense to consider them within a common context. The main goal of Variational and Extremum Principles in Macroscopic Systems is to collect various mathematical formulations and examples of physical reasoning that involve both basic theoretical aspects and applications of variational and extremum approaches to systems of the macroscopic world. The first part of the book is focused on the theory, whereas the second focuses on applications. The unifying variational approach is used to derive the balance or conservation equations, phenomenological equations linking fluxes and forces, equations of change for processes with coupled transfer of energy and substance, and optimal conditions for energy management. - A unique multidisciplinary synthesis of variational and extremum principles in theory and application - A comprehensive review of current and past achievements in variational formulations for macroscopic processes - Uses Lagrangian and Hamiltonian formalisms as a basis for the exposition of novel approaches to transfer and conversion of thermal, solar and chemical energy

Nonlinear System Theory

Nonlinear System Theory
Author: Casti
Publisher: Academic Press
Total Pages: 275
Release: 1985-02-21
Genre: Computers
ISBN: 0080958656

Nonlinear System Theory