Metaheuristic Computation: A Performance Perspective

Metaheuristic Computation: A Performance Perspective
Author: Erik Cuevas
Publisher: Springer Nature
Total Pages: 281
Release: 2020-10-05
Genre: Technology & Engineering
ISBN: 3030581004

This book is primarily intended for undergraduate and postgraduate students of Science, Electrical Engineering, or Computational Mathematics. Metaheuristic search methods are so numerous and varied in terms of design and potential applications; however, for such an abundant family of optimization techniques, there seems to be a question which needs to be answered: Which part of the design in a metaheuristic algorithm contributes more to its better performance? Several works that compare the performance among metaheuristic approaches have been reported in the literature. Nevertheless, they suffer from one of the following limitations: (A)Their conclusions are based on the performance of popular evolutionary approaches over a set of synthetic functions with exact solutions and well-known behaviors, without considering the application context or including recent developments. (B) Their conclusions consider only the comparison of their final results which cannot evaluate the nature of a good or bad balance between exploration and exploitation. The objective of this book is to compare the performance of various metaheuristic techniques when they are faced with complex optimization problems extracted from different engineering domains. The material has been compiled from a teaching perspective.

Metaheuristic Computation with MATLAB®

Metaheuristic Computation with MATLAB®
Author: Erik Cuevas
Publisher: CRC Press
Total Pages: 244
Release: 2020-09-14
Genre: Computers
ISBN: 100009653X

Metaheuristic algorithms are considered as generic optimization tools that can solve very complex problems characterized by having very large search spaces. Metaheuristic methods reduce the effective size of the search space through the use of effective search strategies. Book Features: Provides a unified view of the most popular metaheuristic methods currently in use Includes the necessary concepts to enable readers to implement and modify already known metaheuristic methods to solve problems Covers design aspects and implementation in MATLAB® Contains numerous examples of problems and solutions that demonstrate the power of these methods of optimization The material has been written from a teaching perspective and, for this reason, this book is primarily intended for undergraduate and postgraduate students of artificial intelligence, metaheuristic methods, and/or evolutionary computation. The objective is to bridge the gap between metaheuristic techniques and complex optimization problems that profit from the convenient properties of metaheuristic approaches. Therefore, engineer practitioners who are not familiar with metaheuristic computation will appreciate that the techniques discussed are beyond simple theoretical tools, since they have been adapted to solve significant problems that commonly arise in such areas.

Recent Metaheuristic Computation Schemes in Engineering

Recent Metaheuristic Computation Schemes in Engineering
Author: Erik Cuevas
Publisher: Springer Nature
Total Pages: 282
Release: 2021-02-04
Genre: Technology & Engineering
ISBN: 3030660079

This book includes two objectives. The first goal is to present advances and developments which have proved to be effective in their application to several complex problems. The second objective is to present the performance comparison of various metaheuristic techniques when they face complex optimization problems. The material has been compiled from a teaching perspective. Most of the problems in science, engineering, economics, and other areas can be translated as an optimization or a search problem. According to their characteristics, some problems can be simple that can be solved by traditional optimization methods based on mathematical analysis. However, most of the problems of practical importance in engineering represent complex scenarios so that they are very hard to be solved by using traditional approaches. Under such circumstances, metaheuristic has emerged as the best alternative to solve this kind of complex formulations. This book is primarily intended for undergraduate and postgraduate students. Engineers and application developers can also benefit from the book contents since it has been structured so that each chapter can be read independently from the others, and therefore, only potential interesting information can be quickly available for solving an industrial problem at hand.

Modeling, Analysis, and Applications in Metaheuristic Computing: Advancements and Trends

Modeling, Analysis, and Applications in Metaheuristic Computing: Advancements and Trends
Author: Yin, Peng-Yeng
Publisher: IGI Global
Total Pages: 446
Release: 2012-03-31
Genre: Computers
ISBN: 1466602716

"This book is a collection of the latest developments, models, and applications within the transdisciplinary fields related to metaheuristic computing, providing readers with insight into a wide range of topics such as genetic algorithms, differential evolution, and ant colony optimization"--Provided by publisher.

Metaheuristics for Bi-level Optimization

Metaheuristics for Bi-level Optimization
Author: El-Ghazali Talbi
Publisher: Springer
Total Pages: 298
Release: 2013-04-09
Genre: Technology & Engineering
ISBN: 3642378382

This book provides a complete background on metaheuristics to solve complex bi-level optimization problems (continuous/discrete, mono-objective/multi-objective) in a diverse range of application domains. Readers learn to solve large scale bi-level optimization problems by efficiently combining metaheuristics with complementary metaheuristics and mathematical programming approaches. Numerous real-world examples of problems demonstrate how metaheuristics are applied in such fields as networks, logistics and transportation, engineering design, finance and security.

Essentials of Metaheuristics (Second Edition)

Essentials of Metaheuristics (Second Edition)
Author: Sean Luke
Publisher:
Total Pages: 242
Release: 2012-12-20
Genre: Algorithms
ISBN: 9781300549628

Interested in the Genetic Algorithm? Simulated Annealing? Ant Colony Optimization? Essentials of Metaheuristics covers these and other metaheuristics algorithms, and is intended for undergraduate students, programmers, and non-experts. The book covers a wide range of algorithms, representations, selection and modification operators, and related topics, and includes 71 figures and 135 algorithms great and small. Algorithms include: Gradient Ascent techniques, Hill-Climbing variants, Simulated Annealing, Tabu Search variants, Iterated Local Search, Evolution Strategies, the Genetic Algorithm, the Steady-State Genetic Algorithm, Differential Evolution, Particle Swarm Optimization, Genetic Programming variants, One- and Two-Population Competitive Coevolution, N-Population Cooperative Coevolution, Implicit Fitness Sharing, Deterministic Crowding, NSGA-II, SPEA2, GRASP, Ant Colony Optimization variants, Guided Local Search, LEM, PBIL, UMDA, cGA, BOA, SAMUEL, ZCS, XCS, and XCSF.

Metaheuristic Computation with MATLAB®

Metaheuristic Computation with MATLAB®
Author: Erik Cuevas
Publisher: CRC Press
Total Pages: 281
Release: 2020-09-14
Genre: Computers
ISBN: 1000096513

Metaheuristic algorithms are considered as generic optimization tools that can solve very complex problems characterized by having very large search spaces. Metaheuristic methods reduce the effective size of the search space through the use of effective search strategies. Book Features: Provides a unified view of the most popular metaheuristic methods currently in use Includes the necessary concepts to enable readers to implement and modify already known metaheuristic methods to solve problems Covers design aspects and implementation in MATLAB® Contains numerous examples of problems and solutions that demonstrate the power of these methods of optimization The material has been written from a teaching perspective and, for this reason, this book is primarily intended for undergraduate and postgraduate students of artificial intelligence, metaheuristic methods, and/or evolutionary computation. The objective is to bridge the gap between metaheuristic techniques and complex optimization problems that profit from the convenient properties of metaheuristic approaches. Therefore, engineer practitioners who are not familiar with metaheuristic computation will appreciate that the techniques discussed are beyond simple theoretical tools, since they have been adapted to solve significant problems that commonly arise in such areas.

Software Engineering Perspectives in Intelligent Systems

Software Engineering Perspectives in Intelligent Systems
Author: Radek Silhavy
Publisher: Springer Nature
Total Pages: 1167
Release: 2020-12-15
Genre: Technology & Engineering
ISBN: 3030633225

This book constitutes the refereed proceedings of the 4th Computational Methods in Systems and Software 2020 (CoMeSySo 2020) proceedings. Software engineering, computer science and artificial intelligence are crucial topics for the research within an intelligent systems problem domain. The CoMeSySo 2020 conference is breaking the barriers, being held online. CoMeSySo 2020 intends to provide an international forum for the discussion of the latest high-quality research results.

Metaheuristics in Machine Learning: Theory and Applications

Metaheuristics in Machine Learning: Theory and Applications
Author: Diego Oliva
Publisher: Springer Nature
Total Pages: 765
Release:
Genre: Computational intelligence
ISBN: 3030705420

This book is a collection of the most recent approaches that combine metaheuristics and machine learning. Some of the methods considered in this book are evolutionary, swarm, machine learning, and deep learning. The chapters were classified based on the content; then, the sections are thematic. Different applications and implementations are included; in this sense, the book provides theory and practical content with novel machine learning and metaheuristic algorithms. The chapters were compiled using a scientific perspective. Accordingly, the book is primarily intended for undergraduate and postgraduate students of Science, Engineering, and Computational Mathematics and is useful in courses on Artificial Intelligence, Advanced Machine Learning, among others. Likewise, the book is useful for research from the evolutionary computation, artificial intelligence, and image processing communities.

Metaheuristics in Water, Geotechnical and Transport Engineering

Metaheuristics in Water, Geotechnical and Transport Engineering
Author: Xin-She Yang
Publisher: Newnes
Total Pages: 503
Release: 2012-09
Genre: Computers
ISBN: 0123982960

Due to an ever-decreasing supply in raw materials and stringent constraints on conventional energy sources, demand for lightweight, efficient and low cost structures has become crucially important in modern engineering design. This requires engineers to search for optimal and robust design options to address design problems that are often large in scale and highly nonlinear, making finding solutions challenging. In the past two decades, metaheuristic algorithms have shown promising power, efficiency and versatility in solving these difficult optimization problems. This book examines the latest developments of metaheuristics and their applications in water, geotechnical and transport engineering offering practical case studies as examples to demonstrate real world applications. Topics cover a range of areas within engineering, including reviews of optimization algorithms, artificial intelligence, cuckoo search, genetic programming, neural networks, multivariate adaptive regression, swarm intelligence, genetic algorithms, ant colony optimization, evolutionary multiobjective optimization with diverse applications in engineering such as behavior of materials, geotechnical design, flood control, water distribution and signal networks. This book can serve as a supplementary text for design courses and computation in engineering as well as a reference for researchers and engineers in metaheursitics, optimization in civil engineering and computational intelligence. Provides detailed descriptions of all major metaheuristic algorithms with a focus on practical implementation Develops new hybrid and advanced methods suitable for civil engineering problems at all levels Appropriate for researchers and advanced students to help to develop their work