Metaheuristic Clustering

Metaheuristic Clustering
Author: Swagatam Das
Publisher: Springer Science & Business Media
Total Pages: 266
Release: 2009-03-24
Genre: Computers
ISBN: 3540921729

Cluster analysis means the organization of an unlabeled collection of objects or patterns into separate groups based on their similarity. The task of computerized data clustering has been approached from diverse domains of knowledge like graph theory, multivariate analysis, neural networks, fuzzy set theory, and so on. Clustering is often described as an unsupervised learning method but most of the traditional algorithms require a prior specification of the number of clusters in the data for guiding the partitioning process, thus making it not completely unsupervised. Modern data mining tools that predict future trends and behaviors for allowing businesses to make proactive and knowledge-driven decisions, demand fast and fully automatic clustering of very large datasets with minimal or no user intervention. In this volume, we formulate clustering as an optimization problem, where the best partitioning of a given dataset is achieved by minimizing/maximizing one (single-objective clustering) or more (multi-objective clustering) objective functions. Using several real world applications, we illustrate the performance of several metaheuristics, particularly the Differential Evolution algorithm when applied to both single and multi-objective clustering problems, where the number of clusters is not known beforehand and must be determined on the run. This volume comprises of 7 chapters including an introductory chapter giving the fundamental definitions and the last Chapter provides some important research challenges. Academics, scientists as well as engineers engaged in research, development and application of optimization techniques and data mining will find the comprehensive coverage of this book invaluable.

Recent Advances in Hybrid Metaheuristics for Data Clustering

Recent Advances in Hybrid Metaheuristics for Data Clustering
Author: Sourav De
Publisher: John Wiley & Sons
Total Pages: 196
Release: 2020-06-02
Genre: Computers
ISBN: 1119551609

An authoritative guide to an in-depth analysis of various state-of-the-art data clustering approaches using a range of computational intelligence techniques Recent Advances in Hybrid Metaheuristics for Data Clustering offers a guide to the fundamentals of various metaheuristics and their application to data clustering. Metaheuristics are designed to tackle complex clustering problems where classical clustering algorithms have failed to be either effective or efficient. The authors noted experts on the topic provide a text that can aid in the design and development of hybrid metaheuristics to be applied to data clustering. The book includes performance analysis of the hybrid metaheuristics in relationship to their conventional counterparts. In addition to providing a review of data clustering, the authors include in-depth analysis of different optimization algorithms. The text offers a step-by-step guide in the build-up of hybrid metaheuristics and to enhance comprehension. In addition, the book contains a range of real-life case studies and their applications. This important text: Includes performance analysis of the hybrid metaheuristics as related to their conventional counterparts Offers an in-depth analysis of a range of optimization algorithms Highlights a review of data clustering Contains a detailed overview of different standard metaheuristics in current use Presents a step-by-step guide to the build-up of hybrid metaheuristics Offers real-life case studies and applications Written for researchers, students and academics in computer science, mathematics, and engineering, Recent Advances in Hybrid Metaheuristics for Data Clustering provides a text that explores the current data clustering approaches using a range of computational intelligence techniques.

Metaheuristics and Reinforcement Techniques for Smart Sensor Applications

Metaheuristics and Reinforcement Techniques for Smart Sensor Applications
Author: Adwitiya Sinha
Publisher: CRC Press
Total Pages: 253
Release: 2024-10-23
Genre: Computers
ISBN: 1040133916

This book discusses the fundamentals of wireless sensor networks,and the prevailing method and trends of smart sensor applications. It presents analytical modelling to foster the understanding of network challenges in developing protocols for next-generation communication standards. • Presents an overview of the low-power sensor, network standards, design challenges and sensor network simulation • Focusses on clustering, methods available for wireless sensor networks to tackle energy hole problems, load balancing and network lifetime enhancements • Discusses enhanced versions of energy models enriched with energy harvesting • Provides an insight into coverage and connectivity issues with genetic meta-heuristics, evolutionary models and reinforcement methodologies designed for wireless sensor networks • Includes a wide range of sensor network applications and their integration with social networks and neural computing. The reference book is for researchers and scholars interested in Smart Sensor applications.

Handbook of Metaheuristic Algorithms

Handbook of Metaheuristic Algorithms
Author: Chun-Wei Tsai
Publisher: Elsevier
Total Pages: 624
Release: 2023-05-30
Genre: Computers
ISBN: 0443191093

Handbook of Metaheuristic Algorithms: From Fundamental Theories to Advanced Applications provides a brief introduction to metaheuristic algorithms from the ground up, including basic ideas and advanced solutions. Although readers may be able to find source code for some metaheuristic algorithms on the Internet, the coding styles and explanations are generally quite different, and thus requiring expanded knowledge between theory and implementation. This book can also help students and researchers construct an integrated perspective of metaheuristic and unsupervised algorithms for artificial intelligence research in computer science and applied engineering domains. Metaheuristic algorithms can be considered the epitome of unsupervised learning algorithms for the optimization of engineering and artificial intelligence problems, including simulated annealing (SA), tabu search (TS), genetic algorithm (GA), ant colony optimization (ACO), particle swarm optimization (PSO), differential evolution (DE), and others. Distinct from most supervised learning algorithms that need labeled data to learn and construct determination models, metaheuristic algorithms inherit characteristics of unsupervised learning algorithms used for solving complex engineering optimization problems without labeled data, just like self-learning, to find solutions to complex problems. - Presents a unified framework for metaheuristics and describes well-known algorithms and their variants - Introduces fundamentals and advanced topics for solving engineering optimization problems, e.g., scheduling problems, sensors deployment problems, and clustering problems - Includes source code based on the unified framework for metaheuristics used as examples to show how TS, SA, GA, ACO, PSO, DE, parallel metaheuristic algorithm, hybrid metaheuristic, local search, and other advanced technologies are realized in programming languages such as C++ and Python

Metaheuristics for Data Clustering and Image Segmentation

Metaheuristics for Data Clustering and Image Segmentation
Author: Meera Ramadas
Publisher: Springer
Total Pages: 167
Release: 2018-12-12
Genre: Technology & Engineering
ISBN: 3030040976

In this book, differential evolution and its modified variants are applied to the clustering of data and images. Metaheuristics have emerged as potential algorithms for dealing with complex optimization problems, which are otherwise difficult to solve using traditional methods. In this regard, differential evolution is considered to be a highly promising technique for optimization and is being used to solve various real-time problems. The book studies the algorithms in detail, tests them on a range of test images, and carefully analyzes their performance. Accordingly, it offers a valuable reference guide for all researchers, students and practitioners working in the fields of artificial intelligence, optimization and data analytics.

Comprehensive Metaheuristics

Comprehensive Metaheuristics
Author: Ali Mirjalili
Publisher: Elsevier
Total Pages: 468
Release: 2023-01-31
Genre: Computers
ISBN: 0323972675

Comprehensive Metaheuristics: Algorithms and Applications presents the foundational underpinnings of metaheuristics and a broad scope of algorithms and real-world applications across a variety of research fields. The book starts with fundamentals, mathematical prerequisites, and conceptual approaches to provide readers with a solid foundation. After presenting multi-objective optimization, constrained optimization, and problem formation for metaheuristics, world-renowned authors give readers in-depth understanding of the full spectrum of algorithms and techniques. Scientists, researchers, academicians, and practitioners who are interested in optimizing a process or procedure to achieve a goal will benefit from the case studies of real-world applications from different domains. The book takes a much-needed holistic approach, putting the most widely used metaheuristic algorithms together with an in-depth treatise on multi-disciplinary applications of metaheuristics. Each algorithm is thoroughly analyzed to observe its behavior, providing a detailed tutorial on how to solve problems using metaheuristics. New case studies and research problem statements are also discussed, which will help researchers in their application of the concepts. - Presented by world-renowned researchers and practitioners in metaheuristics - Includes techniques, algorithms, and applications based on real-world case studies - Presents the methodology for formulating optimization problems for metaheuristics - Provides readers with methods for analyzing and tuning the performance of a metaheuristic, as well as for integrating metaheuristics in other AI techniques - Features online complementary source code from the applications and algorithms

Partitional Clustering via Nonsmooth Optimization

Partitional Clustering via Nonsmooth Optimization
Author: Adil M. Bagirov
Publisher: Springer Nature
Total Pages: 343
Release: 2020-02-24
Genre: Technology & Engineering
ISBN: 3030378268

This book describes optimization models of clustering problems and clustering algorithms based on optimization techniques, including their implementation, evaluation, and applications. The book gives a comprehensive and detailed description of optimization approaches for solving clustering problems; the authors' emphasis on clustering algorithms is based on deterministic methods of optimization. The book also includes results on real-time clustering algorithms based on optimization techniques, addresses implementation issues of these clustering algorithms, and discusses new challenges arising from big data. The book is ideal for anyone teaching or learning clustering algorithms. It provides an accessible introduction to the field and it is well suited for practitioners already familiar with the basics of optimization.

Evolutionary Data Clustering: Algorithms and Applications

Evolutionary Data Clustering: Algorithms and Applications
Author: Ibrahim Aljarah
Publisher: Springer Nature
Total Pages: 248
Release: 2021-02-20
Genre: Technology & Engineering
ISBN: 9813341912

This book provides an in-depth analysis of the current evolutionary clustering techniques. It discusses the most highly regarded methods for data clustering. The book provides literature reviews about single objective and multi-objective evolutionary clustering algorithms. In addition, the book provides a comprehensive review of the fitness functions and evaluation measures that are used in most of evolutionary clustering algorithms. Furthermore, it provides a conceptual analysis including definition, validation and quality measures, applications, and implementations for data clustering using classical and modern nature-inspired techniques. It features a range of proven and recent nature-inspired algorithms used to data clustering, including particle swarm optimization, ant colony optimization, grey wolf optimizer, salp swarm algorithm, multi-verse optimizer, Harris hawks optimization, beta-hill climbing optimization. The book also covers applications of evolutionary data clustering in diverse fields such as image segmentation, medical applications, and pavement infrastructure asset management.

Machine Learning and Metaheuristic Computation

Machine Learning and Metaheuristic Computation
Author: Erik Cuevas
Publisher: John Wiley & Sons
Total Pages: 437
Release: 2024-12-24
Genre: Computers
ISBN: 139422964X

Learn to bridge the gap between machine learning and metaheuristic methods to solve problems in optimization approaches Few areas of technology have greater potential to revolutionize the globe than artificial intelligence. Two key areas of artificial intelligence, machine learning and metaheuristic computation, have an enormous range of individual and combined applications in computer science and technology. To date, these two complementary paradigms have not always been treated together, despite the potential of a combined approach which maximizes the utility and minimizes the drawbacks of both. Machine Learning and Metaheuristic Computation offers an introduction to both of these approaches and their joint applications. Both a reference text and a course, it is built around the popular Python programming language to maximize utility. It guides the reader gradually from an initial understanding of these crucial methods to an advanced understanding of cutting-edge artificial intelligence tools. The text also provides: Treatment suitable for readers with only basic mathematical training Detailed discussion of topics including dimensionality reduction, clustering methods, differential evolution, and more A rigorous but accessible vision of machine learning algorithms and the most popular approaches of metaheuristic optimization Machine Learning and Metaheuristic Computation is ideal for students, researchers, and professionals looking to combine these vital methods to solve problems in optimization approaches.

Cognitive Big Data Intelligence with a Metaheuristic Approach

Cognitive Big Data Intelligence with a Metaheuristic Approach
Author: Sushruta Mishra
Publisher: Academic Press
Total Pages: 374
Release: 2021-11-09
Genre: Computers
ISBN: 0323851185

Cognitive Big Data Intelligence with a Metaheuristic Approach presents an exact and compact organization of content relating to the latest metaheuristics methodologies based on new challenging big data application domains and cognitive computing. The combined model of cognitive big data intelligence with metaheuristics methods can be used to analyze emerging patterns, spot business opportunities, and take care of critical process-centric issues in real-time. Various real-time case studies and implemented works are discussed in this book for better understanding and additional clarity. This book presents an essential platform for the use of cognitive technology in the field of Data Science. It covers metaheuristic methodologies that can be successful in a wide variety of problem settings in big data frameworks. - Provides a unique opportunity to present the work on the state-of-the-art of metaheuristics approach in the area of big data processing developing automated and intelligent models - Explains different, feasible applications and case studies where cognitive computing can be successfully implemented in big data analytics using metaheuristics algorithms - Provides a snapshot of the latest advances in the contribution of metaheuristics frameworks in cognitive big data applications to solve optimization problems