Mechanizing Mathematical Reasoning

Mechanizing Mathematical Reasoning
Author: Dieter Hutter
Publisher: Springer
Total Pages: 573
Release: 2011-03-29
Genre: Computers
ISBN: 354032254X

By presenting state-of-the-art results in logical reasoning and formal methods in the context of artificial intelligence and AI applications, this book commemorates the 60th birthday of Jörg H. Siekmann. The 30 revised reviewed papers are written by former and current students and colleagues of Jörg Siekmann; also included is an appraisal of the scientific career of Jörg Siekmann entitled "A Portrait of a Scientist: Logics, AI, and Politics." The papers are organized in four parts on logic and deduction, applications of logic, formal methods and security, and agents and planning.

Mathematical Reasoning with Diagrams

Mathematical Reasoning with Diagrams
Author: Mateja Jamnik
Publisher: Stanford Univ Center for the Study
Total Pages: 204
Release: 2001-01
Genre: Mathematics
ISBN: 9781575863245

Mathematicians at every level use diagrams to prove theorems. Mathematical Reasoning with Diagrams investigates the possibilities of mechanizing this sort of diagrammatic reasoning in a formal computer proof system, even offering a semi-automatic formal proof system—called Diamond—which allows users to prove arithmetical theorems using diagrams.

Mechanizing Hypothesis Formation

Mechanizing Hypothesis Formation
Author: P. Hajek
Publisher: Springer Science & Business Media
Total Pages: 410
Release: 2012-12-06
Genre: Mathematics
ISBN: 3642669433

Hypothesis formation is known as one of the branches of Artificial Intelligence, The general question of Artificial IntelligencE' ,"Can computers think?" is specified to the question ,"Can computers formulate and justify hypotheses?" Various attempts have been made to answer the latter question positively. The present book is one such attempt. Our aim is not to formalize and mechanize the whole domain of inductive reasoning. Our ultimate question is: Can computers formulate and justify scientific hypotheses? Can they comprehend empirical data and process them rationally, using the apparatus of modern mathematical logic and statistics to try to produce a rational image of the observed empirical world? Theories of hypothesis formation are sometimes called logics of discovery. Plotkin divides a logic of discovery into a logic of induction: studying the notion of justification of a hypothesis, and a logic of suggestion: studying methods of suggesting reasonable hypotheses. We use this division for the organization of the present book: Chapter I is introductory and explains the subject of our logic of discovery. The rest falls into two parts: Part A - a logic of induction, and Part B - a logic of suggestion.

Mechanization of Reasoning in a Historical Perspective

Mechanization of Reasoning in a Historical Perspective
Author:
Publisher: BRILL
Total Pages: 267
Release: 2023-03-13
Genre: Language Arts & Disciplines
ISBN: 9004457429

This volume is written jointly by Witold Marciszewski, who contributed the introductory and the three subsequent chapters, and Roman Murawski who is the author of the next ones - those concerned with the 19th century and the modern inquiries into formalization, algebraization and mechanization of reasonings. Besides the authors there are other persons, as well as institutions, to whom the book owes its coming into being. The study which resulted in this volume was carried out in the Historical Section of the research project Logical Systems and Algorithms for Automatic Testing of Reasoning, 1986-1990, in which participated nine Polish universities; the project was coordinated by the Department of Logic, Methodology and Philosophy of Science of the Bia??l??ystok Branch of the University of Warsaw, and supported by the Ministry of Education (some of its results are reported in (Srzednicki (Ed.) 1987). The major part of the project was focussed on the software for computer-aided theorem proving called Mizar MSE (Multi-Sorted first-order logic with Equality, reported in (Marciszewski 1994a)) due to Dr. Andrzej Trybulec. He and other colleagues deserve a grateful mention for a hands-on experience and theoretical stimulants owed to their collaboration.

Mathematical Reasoning: The History and Impact of the DReaM Group

Mathematical Reasoning: The History and Impact of the DReaM Group
Author: Gregory Michaelson
Publisher: Springer Nature
Total Pages: 173
Release: 2021-11-20
Genre: Computers
ISBN: 3030778797

This collection of essays examines the key achievements and likely developments in the area of automated reasoning. In keeping with the group ethos, Automated Reasoning is interpreted liberally, spanning underpinning theory, tools for reasoning, argumentation, explanation, computational creativity, and pedagogy. Wider applications including secure and trustworthy software, and health care and emergency management. The book starts with a technically oriented history of the Edinburgh Automated Reasoning Group, written by Alan Bundy, which is followed by chapters from leading researchers associated with the group. Mathematical Reasoning: The History and Impact of the DReaM Group will attract considerable interest from researchers and practitioners of Automated Reasoning, including postgraduates. It should also be of interest to those researching the history of AI.

Mathematical Reasoning

Mathematical Reasoning
Author: Raymond Nickerson
Publisher: Taylor & Francis
Total Pages: 597
Release: 2011-02-25
Genre: Psychology
ISBN: 1136945393

The development of mathematical competence -- both by humans as a species over millennia and by individuals over their lifetimes -- is a fascinating aspect of human cognition. This book explores when and why the rudiments of mathematical capability first appeared among human beings, what its fundamental concepts are, and how and why it has grown into the richly branching complex of specialties that it is today. It discusses whether the ‘truths’ of mathematics are discoveries or inventions, and what prompts the emergence of concepts that appear to be descriptive of nothing in human experience. Also covered is the role of esthetics in mathematics: What exactly are mathematicians seeing when they describe a mathematical entity as ‘beautiful’? There is discussion of whether mathematical disability is distinguishable from a general cognitive deficit and whether the potential for mathematical reasoning is best developed through instruction. This volume is unique in the vast range of psychological questions it covers, as revealed in the work habits and products of numerous mathematicians. It provides fascinating reading for researchers and students with an interest in cognition in general and mathematical cognition in particular. Instructors of mathematics will also find the book’s insights illuminating.

Logic, Language, Information, and Computation

Logic, Language, Information, and Computation
Author: Ulrich Kohlenbach
Publisher: Springer
Total Pages: 255
Release: 2014-08-23
Genre: Mathematics
ISBN: 3662441454

Edited in collaboration with FoLLI, the Association of Logic, Language and Information this book constitutes the refereed proceedings of the 21st Workshop on Logic, Language, Information and Communication, WoLLIC 2014, held in Valparaiso, Chile, in September 2014. The 15 contributed papers presented together with 6 invited lectures were carefully reviewed and selected from 29 submissions. The focus of the workshop was on the following subjects Inter-Disciplinary Research involving Formal Logic, Computing and Programming Theory, and Natural Language and Reasoning.

Mechanizing Proof

Mechanizing Proof
Author: Donald MacKenzie
Publisher: MIT Press
Total Pages: 448
Release: 2004-01-30
Genre: Social Science
ISBN: 9780262632959

Most aspects of our private and social lives—our safety, the integrity of the financial system, the functioning of utilities and other services, and national security—now depend on computing. But how can we know that this computing is trustworthy? In Mechanizing Proof, Donald MacKenzie addresses this key issue by investigating the interrelations of computing, risk, and mathematical proof over the last half century from the perspectives of history and sociology. His discussion draws on the technical literature of computer science and artificial intelligence and on extensive interviews with participants. MacKenzie argues that our culture now contains two ideals of proof: proof as traditionally conducted by human mathematicians, and formal, mechanized proof. He describes the systems constructed by those committed to the latter ideal and the many questions those systems raise about the nature of proof. He looks at the primary social influence on the development of automated proof—the need to predict the behavior of the computer systems upon which human life and security depend—and explores the involvement of powerful organizations such as the National Security Agency. He concludes that in mechanizing proof, and in pursuing dependable computer systems, we do not obviate the need for trust in our collective human judgment.

Proof Technology in Mathematics Research and Teaching

Proof Technology in Mathematics Research and Teaching
Author: Gila Hanna
Publisher: Springer Nature
Total Pages: 374
Release: 2019-10-02
Genre: Education
ISBN: 3030284832

This book presents chapters exploring the most recent developments in the role of technology in proving. The full range of topics related to this theme are explored, including computer proving, digital collaboration among mathematicians, mathematics teaching in schools and universities, and the use of the internet as a site of proof learning. Proving is sometimes thought to be the aspect of mathematical activity most resistant to the influence of technological change. While computational methods are well known to have a huge importance in applied mathematics, there is a perception that mathematicians seeking to derive new mathematical results are unaffected by the digital era. The reality is quite different. Digital technologies have transformed how mathematicians work together, how proof is taught in schools and universities, and even the nature of proof itself. Checking billions of cases in extremely large but finite sets, impossible a few decades ago, has now become a standard method of proof. Distributed proving, by teams of mathematicians working independently on sections of a problem, has become very much easier as digital communication facilitates the sharing and comparison of results. Proof assistants and dynamic proof environments have influenced the verification or refutation of conjectures, and ultimately how and why proof is taught in schools. And techniques from computer science for checking the validity of programs are being used to verify mathematical proofs. Chapters in this book include not only research reports and case studies, but also theoretical essays, reviews of the state of the art in selected areas, and historical studies. The authors are experts in the field.