Measurement And Multivariate Analysis
Download Measurement And Multivariate Analysis full books in PDF, epub, and Kindle. Read online free Measurement And Multivariate Analysis ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : David J. Hand |
Publisher | : CRC Press |
Total Pages | : 284 |
Release | : 1987-05-01 |
Genre | : Mathematics |
ISBN | : 9780412258008 |
This book describes a practical aproach to univariate and multivariate analysis of variance. It starts with a general non-mathematical account of the fundamental theories and this is followed by a discussion of a series of examples using real data sets from the authors' own work in clinical trials, psychology and industry. Included are discussions of factorial and nested designs, structures on the multiple dependent variables measured on each subject, repeated measures analyses, covariates, choice of text statistic and simultaneous test procedures.
Author | : Shizuhiko Nishisato |
Publisher | : Springer Science & Business Media |
Total Pages | : 347 |
Release | : 2013-11-11 |
Genre | : Mathematics |
ISBN | : 4431659552 |
Diversity is characteristic of the information age and also of statistics. To date, the social sciences have contributed greatly to the development of handling data under the rubric of measurement, while the statistical sciences have made phenomenal advances in theory and algorithms. Measurement and Multivariate Analysis promotes an effective interplay between those two realms of research-diversity with unity. The union and the intersection of those two areas of interest are reflected in the papers in this book, drawn from an international conference in Banff, Canada, with participants from 15 countries. In five major categories - scaling, structural analysis, statistical inference, algorithms, and data analysis - readers will find a rich variety of topics of current interest in the extended statistical community.
Author | : Brian Everitt |
Publisher | : Springer Science & Business Media |
Total Pages | : 284 |
Release | : 2011-04-23 |
Genre | : Mathematics |
ISBN | : 1441996508 |
The majority of data sets collected by researchers in all disciplines are multivariate, meaning that several measurements, observations, or recordings are taken on each of the units in the data set. These units might be human subjects, archaeological artifacts, countries, or a vast variety of other things. In a few cases, it may be sensible to isolate each variable and study it separately, but in most instances all the variables need to be examined simultaneously in order to fully grasp the structure and key features of the data. For this purpose, one or another method of multivariate analysis might be helpful, and it is with such methods that this book is largely concerned. Multivariate analysis includes methods both for describing and exploring such data and for making formal inferences about them. The aim of all the techniques is, in general sense, to display or extract the signal in the data in the presence of noise and to find out what the data show us in the midst of their apparent chaos. An Introduction to Applied Multivariate Analysis with R explores the correct application of these methods so as to extract as much information as possible from the data at hand, particularly as some type of graphical representation, via the R software. Throughout the book, the authors give many examples of R code used to apply the multivariate techniques to multivariate data.
Author | : Joseph Hair |
Publisher | : Pearson Higher Ed |
Total Pages | : 816 |
Release | : 2016-08-18 |
Genre | : Business & Economics |
ISBN | : 0133792684 |
This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. For graduate and upper-level undergraduate marketing research courses. For over 30 years, Multivariate Data Analysis has provided readers with the information they need to understand and apply multivariate data analysis. Hair et. al provides an applications-oriented introduction to multivariate analysis for the non-statistician. By reducing heavy statistical research into fundamental concepts, the text explains to readers how to understand and make use of the results of specific statistical techniques. In this Seventh Edition, the organization of the chapters has been greatly simplified. New chapters have been added on structural equations modeling, and all sections have been updated to reflect advances in technology, capability, and mathematical techniques.
Author | : Wolfgang Karl Härdle |
Publisher | : Springer Nature |
Total Pages | : 611 |
Release | : |
Genre | : |
ISBN | : 3031638336 |
Author | : Michael Greenacre |
Publisher | : Fundacion BBVA |
Total Pages | : 336 |
Release | : 2014-01-09 |
Genre | : Ecology |
ISBN | : 8492937505 |
La diversidad biológica es fruto de la interacción entre numerosas especies, ya sean marinas, vegetales o animales, a la par que de los muchos factores limitantes que caracterizan el medio que habitan. El análisis multivariante utiliza las relaciones entre diferentes variables para ordenar los objetos de estudio según sus propiedades colectivas y luego clasificarlos; es decir, agrupar especies o ecosistemas en distintas clases compuestas cada una por entidades con propiedades parecidas. El fin último es relacionar la variabilidad biológica observada con las correspondientes características medioambientales. Multivariate Analysis of Ecological Data explica de manera completa y estructurada cómo analizar e interpretar los datos ecológicos observados sobre múltiples variables, tanto biológicos como medioambientales. Tras una introducción general a los datos ecológicos multivariantes y la metodología estadística, se abordan en capítulos específicos, métodos como aglomeración (clustering), regresión, biplots, escalado multidimensional, análisis de correspondencias (simple y canónico) y análisis log-ratio, con atención también a sus problemas de modelado y aspectos inferenciales. El libro plantea una serie de aplicaciones a datos reales derivados de investigaciones ecológicas, además de dos casos detallados que llevan al lector a apreciar los retos de análisis, interpretación y comunicación inherentes a los estudios a gran escala y los diseños complejos.
Author | : Kimmo Vehkalahti |
Publisher | : CRC Press |
Total Pages | : 444 |
Release | : 2018-12-19 |
Genre | : Mathematics |
ISBN | : 1351202251 |
Multivariate Analysis for the Behavioral Sciences, Second Edition is designed to show how a variety of statistical methods can be used to analyse data collected by psychologists and other behavioral scientists. Assuming some familiarity with introductory statistics, the book begins by briefly describing a variety of study designs used in the behavioral sciences, and the concept of models for data analysis. The contentious issues of p-values and confidence intervals are also discussed in the introductory chapter. After describing graphical methods, the book covers regression methods, including simple linear regression, multiple regression, locally weighted regression, generalized linear models, logistic regression, and survival analysis. There are further chapters covering longitudinal data and missing values, before the last seven chapters deal with multivariate analysis, including principal components analysis, factor analysis, multidimensional scaling, correspondence analysis, and cluster analysis. Features: Presents an accessible introduction to multivariate analysis for behavioral scientists Contains a large number of real data sets, including cognitive behavioral therapy, crime rates, and drug usage Includes nearly 100 exercises for course use or self-study Supplemented by a GitHub repository with all datasets and R code for the examples and exercises Theoretical details are separated from the main body of the text Suitable for anyone working in the behavioral sciences with a basic grasp of statistics
Author | : John Spicer |
Publisher | : SAGE |
Total Pages | : 256 |
Release | : 2005 |
Genre | : Mathematics |
ISBN | : 9781412904018 |
A short introduction to the subject, this text is aimed at students & practitioners in the behavioural & social sciences. It offers a conceptual overview of the foundations of MDA & of a range of specific techniques including multiple regression, logistic regression & log-linear analysis.
Author | : Malempati Madhusudana Rao |
Publisher | : World Scientific |
Total Pages | : 553 |
Release | : 2012 |
Genre | : Mathematics |
ISBN | : 9814350818 |
Deals with the structural analysis of vector and random (or both) valued countably additive measures, and used for integral representations of random fields. This book analyzes several stationary aspects and related processes.
Author | : Richard J. Harris |
Publisher | : Psychology Press |
Total Pages | : 632 |
Release | : 2001-05-01 |
Genre | : Psychology |
ISBN | : 1135555435 |
Drawing upon more than 30 years of experience in working with statistics, Dr. Richard J. Harris has updated A Primer of Multivariate Statistics to provide a model of balance between how-to and why. This classic text covers multivariate techniques with a taste of latent variable approaches. Throughout the book there is a focus on the importance of describing and testing one's interpretations of the emergent variables that are produced by multivariate analysis. This edition retains its conversational writing style while focusing on classical techniques. The book gives the reader a feel for why one should consider diving into more detailed treatments of computer-modeling and latent-variable techniques, such as non-recursive path analysis, confirmatory factor analysis, and hierarchical linear modeling. Throughout the book there is a focus on the importance of describing and testing one's interpretations of the emergent variables that are produced by multivariate analysis.