Maxwell Equation Inverse Scattering In Electromagnetism
Download Maxwell Equation Inverse Scattering In Electromagnetism full books in PDF, epub, and Kindle. Read online free Maxwell Equation Inverse Scattering In Electromagnetism ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Hiroshi Isozaki |
Publisher | : World Scientific |
Total Pages | : 300 |
Release | : 2018-07-12 |
Genre | : Science |
ISBN | : 9813232714 |
How can one determine the physical properties of the medium or the geometrical properties of the domain by observing electromagnetic waves? To answer this fundamental problem in mathematics and physics, this book leads the reader to the frontier of inverse scattering theory for electromagnetism.The first three chapters, written comprehensively, can be used as a textbook for undergraduate students. Beginning with elementary vector calculus, this book provides fundamental results for wave equations and Helmholtz equations, and summarizes the potential theory. It also explains the cohomology theory in an easy and straightforward way, which is an essential part of electromagnetism related to geometry. It then describes the scattering theory for the Maxwell equation by the time-dependent method and also by the stationary method in a concise, but almost self-contained manner. Based on these preliminary results, the book proceeds to the inverse problem for the Maxwell equation.The chapters for the potential theory and elementary cohomology theory are good introduction to graduate students. The results in the last chapter on the inverse scattering for the medium and the determination of Betti numbers are new, and will give a current scope for the inverse spectral problem on non-compact manifolds. It will be useful for young researchers who are interested in this field and trying to find new problems.
Author | : David Colton |
Publisher | : Springer Science & Business Media |
Total Pages | : 316 |
Release | : 2013-04-17 |
Genre | : Mathematics |
ISBN | : 3662028352 |
It has now been almost ten years since our first book on scattering theory ap peared [32]. At that time we claimed that "in recent years the development of integral equation methods for the direct scattering problem seems to be nearing completion, whereas the use of such an approach to study the inverse scattering problem has progressed to an extent that a 'state of the art' survey appears highly desirable". Since we wrote these words, the inverse scattering problem for acoustic and electromagnetic waves has grown from being a few theoreti cal considerations with limited numerical implementations to a weH developed mathematical theory with tested numerical algorithms. This maturing of the field of inverse scattering theory has been based on the realization that such problems are in general not only nonlinear but also improperly posed in the sense that the solution does not depend continuously on the measured data. This was emphasized in [32] and treated with the ideas and tools available at that time. Now, almost ten years later, these initial ideas have developed to the extent that a monograph summarizing the mathematical basis of the field seems appropriate. This book is oUf attempt to write such a monograph. The inverse scattering problem for acoustic and electromagnetic waves can broadly be divided into two classes, the inverse obstacle problem and the inverse medium problem.
Author | : Huaian Diao |
Publisher | : Springer Nature |
Total Pages | : 388 |
Release | : 2023-10-31 |
Genre | : Mathematics |
ISBN | : 3031346157 |
Inverse scattering problems are a vital subject for both theoretical and experimental studies and remain an active field of research in applied mathematics. This book provides a detailed presentation of typical setup of inverse scattering problems for time-harmonic acoustic, electromagnetic and elastic waves. Moreover, it provides systematical and in-depth discussion on an important class of geometrical inverse scattering problems, where the inverse problem aims at recovering the shape and location of a scatterer independent of its medium properties. Readers of this book will be exposed to a unified framework for analyzing a variety of geometrical inverse scattering problems from a spectral geometric perspective. This book contains both overviews of classical results and update-to-date information on latest developments from both a practical and theoretical point of view. It can be used as an advanced graduate textbook in universities or as a reference source for researchers in acquiring the state-of-the-art results in inverse scattering theory and their potential applications.
Author | : Khosrow Chadan |
Publisher | : SIAM |
Total Pages | : 208 |
Release | : 1997-01-01 |
Genre | : Mathematics |
ISBN | : 9780898719710 |
Here is a clearly written introduction to three central areas of inverse problems: inverse problems in electromagnetic scattering theory, inverse spectral theory, and inverse problems in quantum scattering theory. Inverse problems, one of the most attractive parts of applied mathematics, attempt to obtain information about structures by nondestructive measurements. Based on a series of lectures presented by three of the authors, all experts in the field, the book provides a quick and easy way for readers to become familiar with the area through a survey of recent developments in inverse spectral and inverse scattering problems.
Author | : Khosrow Chadan |
Publisher | : SIAM |
Total Pages | : 206 |
Release | : 1997-01-01 |
Genre | : Mathematics |
ISBN | : 0898713870 |
Here is a clearly written introduction to three central areas of inverse problems: inverse problems in electromagnetic scattering theory, inverse spectral theory, and inverse problems in quantum scattering theory. Inverse problems, one of the most attractive parts of applied mathematics, attempt to obtain information about structures by nondestructive measurements. Based on a series of lectures presented by three of the authors, all experts in the field, the book provides a quick and easy way for readers to become familiar with the area through a survey of recent developments in inverse spectral and inverse scattering problems.
Author | : K.I. Hopcraft |
Publisher | : Springer Science & Business Media |
Total Pages | : 241 |
Release | : 2013-03-09 |
Genre | : Science |
ISBN | : 9401580146 |
With the advent of the comparatively new disciplines of remote sensing and non-destructive evaluation of materials, the topic of inverse scattering has broadened from its origins in elementary particle physics to encompass a diversity of applications. One such area which is of increasing importance in inverse scattering within the context of electromagnetism and this text aims to serve as an introduction to that particular speciality. The subject's development has progressed at the hands of engineers, mathematicians and physicists alike, with an inevitable disparity of emphasis and notation. One of the main objectives of this text is to distill the essence of the subject and to present it in the form of a graduated and coherent development of ideas and techniques. The text provides a physical approach to inverse scattering solutions, emphasizing the applied aspects rather than the mathematical rigour. The authors' teaching and research backgrounds in physics, electrical engineering and applied mathematics enable them to explore and stress the cross disciplinary nature of the subject. This treatment will be of use to anyone embarking on a theoretical or practical study of inverse electromagnetic scattering.
Author | : Hiroshi Isozaki |
Publisher | : Springer Nature |
Total Pages | : 130 |
Release | : 2020-09-26 |
Genre | : Science |
ISBN | : 9811581991 |
The aim of this book is to provide basic knowledge of the inverse problems arising in various areas in mathematics, physics, engineering, and medical science. These practical problems boil down to the mathematical question in which one tries to recover the operator (coefficients) or the domain (manifolds) from spectral data. The characteristic properties of the operators in question are often reduced to those of Schrödinger operators. We start from the 1-dimensional theory to observe the main features of inverse spectral problems and then proceed to multi-dimensions. The first milestone is the Borg–Levinson theorem in the inverse Dirichlet problem in a bounded domain elucidating basic motivation of the inverse problem as well as the difference between 1-dimension and multi-dimension. The main theme is the inverse scattering, in which the spectral data is Heisenberg’s S-matrix defined through the observation of the asymptotic behavior at infinity of solutions. Significant progress has been made in the past 30 years by using the Faddeev–Green function or the complex geometrical optics solution by Sylvester and Uhlmann, which made it possible to reconstruct the potential from the S-matrix of one fixed energy. One can also prove the equivalence of the knowledge of S-matrix and that of the Dirichlet-to-Neumann map for boundary value problems in bounded domains. We apply this idea also to the Dirac equation, the Maxwell equation, and discrete Schrödinger operators on perturbed lattices. Our final topic is the boundary control method introduced by Belishev and Kurylev, which is for the moment the only systematic method for the reconstruction of the Riemannian metric from the boundary observation, which we apply to the inverse scattering on non-compact manifolds. We stress that this book focuses on the lucid exposition of these problems and mathematical backgrounds by explaining the basic knowledge of functional analysis and spectral theory, omitting the technical details in order to make the book accessible to graduate students as an introduction to partial differential equations (PDEs) and functional analysis.
Author | : David Colton |
Publisher | : Springer Nature |
Total Pages | : 526 |
Release | : 2019-11-06 |
Genre | : Mathematics |
ISBN | : 3030303519 |
The inverse scattering problem is central to many areas of science and technology such as radar, sonar, medical imaging, geophysical exploration and nondestructive testing. This book is devoted to the mathematical and numerical analysis of the inverse scattering problem for acoustic and electromagnetic waves. In this fourth edition, a number of significant additions have been made including a new chapter on transmission eigenvalues and a new section on the impedance boundary condition where particular attention has been made to the generalized impedance boundary condition and to nonlocal impedance boundary conditions. Brief discussions on the generalized linear sampling method, the method of recursive linearization, anisotropic media and the use of target signatures in inverse scattering theory have also been added.
Author | : Peter Monk |
Publisher | : Clarendon Press |
Total Pages | : 468 |
Release | : 2003-04-17 |
Genre | : Mathematics |
ISBN | : 0191545228 |
Since the middle of the last century, computing power has increased sufficiently that the direct numerical approximation of Maxwell's equations is now an increasingly important tool in science and engineering. Parallel to the increasing use of numerical methods in computational electromagnetism there has also been considerable progress in the mathematical understanding of the properties of Maxwell's equations relevant to numerical analysis. The aim of this book is to provide an up to date and sound theoretical foundation for finite element methods in computational electromagnetism. The emphasis is on finite element methods for scattering problems that involve the solution of Maxwell's equations on infinite domains. Suitable variational formulations are developed and justified mathematically. An error analysis of edge finite element methods that are particularly well suited to Maxwell's equations is the main focus of the book. The methods are justified for Lipschitz polyhedral domains that can cause strong singularities in the solution. The book finishes with a short introduction to inverse problems in electromagnetism.
Author | : Hiroshi Isozaki |
Publisher | : American Mathematical Soc. |
Total Pages | : 258 |
Release | : 2004 |
Genre | : Mathematics |
ISBN | : 0821834215 |
This volume grew out of a workshop on spectral theory of differential operators and inverse problems held at the Research Institute for Mathematical Sciences (Kyoto University). The gathering of nearly 100 participants at the conference suggests the increasing interest in this field of research. The focus of the book is on spectral theory for differential operators and related inverse problems. It includes selected topics from the following areas: electromagnetism, elasticity, the Schrodinger equation, differential geometry, and numerical analysis. The material is suitable for graduate students and researchers interested in inverse problems and their applications.