Matrix Iterative Analysis

Matrix Iterative Analysis
Author: Richard S. Varga
Publisher: Springer Science & Business Media
Total Pages: 390
Release: 1999-11-17
Genre: Mathematics
ISBN: 9783540663218

This book is a revised version of the first edition, regarded as a classic in its field. In some places, newer research results have been incorporated in the revision, and in other places, new material has been added to the chapters in the form of additional up-to-date references and some recent theorems to give readers some new directions to pursue.

Matrix Iterative Analysis

Matrix Iterative Analysis
Author: Richard S. Varga
Publisher: Springer Science & Business Media
Total Pages: 362
Release: 2009-12-21
Genre: Mathematics
ISBN: 3642051545

This book is a revised version of the first edition, regarded as a classic in its field. In some places, newer research results have been incorporated in the revision, and in other places, new material has been added to the chapters in the form of additional up-to-date references and some recent theorems to give readers some new directions to pursue.

Applied Iterative Methods

Applied Iterative Methods
Author: Louis A. Hageman
Publisher: Elsevier
Total Pages: 409
Release: 2014-06-28
Genre: Mathematics
ISBN: 1483294374

Applied Iterative Methods

Linear Algebra and Matrix Analysis for Statistics

Linear Algebra and Matrix Analysis for Statistics
Author: Sudipto Banerjee
Publisher: CRC Press
Total Pages: 586
Release: 2014-06-06
Genre: Mathematics
ISBN: 1420095382

Linear Algebra and Matrix Analysis for Statistics offers a gradual exposition to linear algebra without sacrificing the rigor of the subject. It presents both the vector space approach and the canonical forms in matrix theory. The book is as self-contained as possible, assuming no prior knowledge of linear algebra. The authors first address the rudimentary mechanics of linear systems using Gaussian elimination and the resulting decompositions. They introduce Euclidean vector spaces using less abstract concepts and make connections to systems of linear equations wherever possible. After illustrating the importance of the rank of a matrix, they discuss complementary subspaces, oblique projectors, orthogonality, orthogonal projections and projectors, and orthogonal reduction. The text then shows how the theoretical concepts developed are handy in analyzing solutions for linear systems. The authors also explain how determinants are useful for characterizing and deriving properties concerning matrices and linear systems. They then cover eigenvalues, eigenvectors, singular value decomposition, Jordan decomposition (including a proof), quadratic forms, and Kronecker and Hadamard products. The book concludes with accessible treatments of advanced topics, such as linear iterative systems, convergence of matrices, more general vector spaces, linear transformations, and Hilbert spaces.

Matrix Analysis and Computations

Matrix Analysis and Computations
Author: Zhong-Zhi Bai
Publisher: SIAM
Total Pages: 496
Release: 2021-09-09
Genre: Mathematics
ISBN: 1611976634

This comprehensive book is presented in two parts; the first part introduces the basics of matrix analysis necessary for matrix computations, and the second part presents representative methods and the corresponding theories in matrix computations. Among the key features of the book are the extensive exercises at the end of each chapter. Matrix Analysis and Computations provides readers with the matrix theory necessary for matrix computations, especially for direct and iterative methods for solving systems of linear equations. It includes systematic methods and rigorous theory on matrix splitting iteration methods and Krylov subspace iteration methods, as well as current results on preconditioning and iterative methods for solving standard and generalized saddle-point linear systems. This book can be used as a textbook for graduate students as well as a self-study tool and reference for researchers and engineers interested in matrix analysis and matrix computations. It is appropriate for courses in numerical analysis, numerical optimization, data science, and approximation theory, among other topics

Solving Linear Systems

Solving Linear Systems
Author: Zbigniew Ignacy Woźnicki
Publisher:
Total Pages: 554
Release: 2009
Genre: Differential equations, Linear
ISBN: 9780971576667

Matrix Iterative Analysis

Matrix Iterative Analysis
Author: Richard S. Varga
Publisher: Springer
Total Pages: 358
Release: 1999-11-17
Genre: Mathematics
ISBN: 9783540663218

This book is a revised version of the first edition, regarded as a classic in its field. In some places, newer research results have been incorporated in the revision, and in other places, new material has been added to the chapters in the form of additional up-to-date references and some recent theorems to give readers some new directions to pursue.

Iterative Methods for Linear Systems

Iterative Methods for Linear Systems
Author: Maxim A. Olshanskii
Publisher: SIAM
Total Pages: 257
Release: 2014-07-21
Genre: Mathematics
ISBN: 1611973465

Iterative Methods for Linear Systems?offers a mathematically rigorous introduction to fundamental iterative methods for systems of linear algebraic equations. The book distinguishes itself from other texts on the topic by providing a straightforward yet comprehensive analysis of the Krylov subspace methods, approaching the development and analysis of algorithms from various algorithmic and mathematical perspectives, and going beyond the standard description of iterative methods by connecting them in a natural way to the idea of preconditioning.??

Iterative Methods and Preconditioners for Systems of Linear Equations

Iterative Methods and Preconditioners for Systems of Linear Equations
Author: Gabriele Ciaramella
Publisher: SIAM
Total Pages: 285
Release: 2022-02-08
Genre: Mathematics
ISBN: 1611976901

Iterative methods use successive approximations to obtain more accurate solutions. This book gives an introduction to iterative methods and preconditioning for solving discretized elliptic partial differential equations and optimal control problems governed by the Laplace equation, for which the use of matrix-free procedures is crucial. All methods are explained and analyzed starting from the historical ideas of the inventors, which are often quoted from their seminal works. Iterative Methods and Preconditioners for Systems of Linear Equations grew out of a set of lecture notes that were improved and enriched over time, resulting in a clear focus for the teaching methodology, which derives complete convergence estimates for all methods, illustrates and provides MATLAB codes for all methods, and studies and tests all preconditioners first as stationary iterative solvers. This textbook is appropriate for undergraduate and graduate students who want an overview or deeper understanding of iterative methods. Its focus on both analysis and numerical experiments allows the material to be taught with very little preparation, since all the arguments are self-contained, and makes it appropriate for self-study as well. It can be used in courses on iterative methods, Krylov methods and preconditioners, and numerical optimal control. Scientists and engineers interested in new topics and applications will also find the text useful.