Matrix Calculus, Kronecker Product And Tensor Product: A Practical Approach To Linear Algebra, Multilinear Algebra And Tensor Calculus With Software Implementations (Third Edition)

Matrix Calculus, Kronecker Product And Tensor Product: A Practical Approach To Linear Algebra, Multilinear Algebra And Tensor Calculus With Software Implementations (Third Edition)
Author: Yorick Hardy
Publisher: World Scientific
Total Pages: 388
Release: 2019-04-08
Genre: Mathematics
ISBN: 9811202532

Our self-contained volume provides an accessible introduction to linear and multilinear algebra as well as tensor calculus. Besides the standard techniques for linear algebra, multilinear algebra and tensor calculus, many advanced topics are included where emphasis is placed on the Kronecker product and tensor product. The Kronecker product has widespread applications in signal processing, discrete wavelets, statistical physics, Hopf algebra, Yang-Baxter relations, computer graphics, fractals, quantum mechanics, quantum computing, entanglement, teleportation and partial trace. All these fields are covered comprehensively.The volume contains many detailed worked-out examples. Each chapter includes useful exercises and supplementary problems. In the last chapter, software implementations are provided for different concepts. The volume is well suited for pure and applied mathematicians as well as theoretical physicists and engineers.New topics added to the third edition are: mutually unbiased bases, Cayley transform, spectral theorem, nonnormal matrices, Gâteaux derivatives and matrices, trace and partial trace, spin coherent states, Clebsch-Gordan series, entanglement, hyperdeterminant, tensor eigenvalue problem, Carleman matrix and Bell matrix, tensor fields and Ricci tensors, and software implementations.

Kronecker Products and Matrix Calculus with Applications

Kronecker Products and Matrix Calculus with Applications
Author: Alexander Graham
Publisher: Courier Dover Publications
Total Pages: 145
Release: 2018-06-13
Genre: Mathematics
ISBN: 0486824179

Enhanced by many worked examples, problems, and solutions, this in-depth text is suitable for undergraduates and presents a great deal of information previously only available in specialized and hard-to-find texts. 1981 edition.

Matrix Calculus And Kronecker Product: A Practical Approach To Linear And Multilinear Algebra (2nd Edition)

Matrix Calculus And Kronecker Product: A Practical Approach To Linear And Multilinear Algebra (2nd Edition)
Author: Willi-hans Steeb
Publisher: World Scientific Publishing Company
Total Pages: 323
Release: 2011-03-24
Genre: Mathematics
ISBN: 981310807X

This book provides a self-contained and accessible introduction to linear and multilinear algebra. Besides the standard techniques for linear and multilinear algebra many advanced topics are included. Emphasis is placed on the Kronecker product and tensor product. The Kronecker product has widespread applications in signal processing, discrete wavelets, statistical physics, computer graphics, fractals, quantum mechanics and quantum computing. All these fields are covered in detail. A key feature of the book is the many detailed worked-out examples. Computer algebra applications are also given. Each chapter includes useful exercises. The book is well suited for pure and applied mathematicians as well as theoretical physicists and engineers.New topics added to the second edition are: braid-like relations, Clebsch-Gordan expansion, nearest Kronecker product, Clifford and Pauli group, universal enveloping algebra, computer algebra and Kronecker product.

Matrix Differential Calculus with Applications in Statistics and Econometrics

Matrix Differential Calculus with Applications in Statistics and Econometrics
Author: Jan R. Magnus
Publisher: John Wiley & Sons
Total Pages: 660
Release: 2019-03-15
Genre: Mathematics
ISBN: 1119541166

A brand new, fully updated edition of a popular classic on matrix differential calculus with applications in statistics and econometrics This exhaustive, self-contained book on matrix theory and matrix differential calculus provides a treatment of matrix calculus based on differentials and shows how easy it is to use this theory once you have mastered the technique. Jan Magnus, who, along with the late Heinz Neudecker, pioneered the theory, develops it further in this new edition and provides many examples along the way to support it. Matrix calculus has become an essential tool for quantitative methods in a large number of applications, ranging from social and behavioral sciences to econometrics. It is still relevant and used today in a wide range of subjects such as the biosciences and psychology. Matrix Differential Calculus with Applications in Statistics and Econometrics, Third Edition contains all of the essentials of multivariable calculus with an emphasis on the use of differentials. It starts by presenting a concise, yet thorough overview of matrix algebra, then goes on to develop the theory of differentials. The rest of the text combines the theory and application of matrix differential calculus, providing the practitioner and researcher with both a quick review and a detailed reference. Fulfills the need for an updated and unified treatment of matrix differential calculus Contains many new examples and exercises based on questions asked of the author over the years Covers new developments in field and features new applications Written by a leading expert and pioneer of the theory Part of the Wiley Series in Probability and Statistics Matrix Differential Calculus With Applications in Statistics and Econometrics Third Edition is an ideal text for graduate students and academics studying the subject, as well as for postgraduates and specialists working in biosciences and psychology.

Matrix Calculus and Kronecker Product with Applications and C++ Programs

Matrix Calculus and Kronecker Product with Applications and C++ Programs
Author: Willi-Hans Steeb
Publisher: World Scientific
Total Pages: 270
Release: 1997
Genre: Science
ISBN: 9789810232412

The Kronecker product of matrices plays a central role in mathematics and in applications found in engineering and theoretical physics. These applications are signal processing, statistical physics, quantum groups and quantum computers. This book provides a comprehensive introduction to the Kronecker product of matrices together with its software implementation in C++ using an object-oriented design.

Tensor Spaces and Numerical Tensor Calculus

Tensor Spaces and Numerical Tensor Calculus
Author: Wolfgang Hackbusch
Publisher: Springer Nature
Total Pages: 622
Release: 2019-12-16
Genre: Mathematics
ISBN: 3030355543

Special numerical techniques are already needed to deal with n × n matrices for large n. Tensor data are of size n × n ×...× n=nd, where nd exceeds the computer memory by far. They appear for problems of high spatial dimensions. Since standard methods fail, a particular tensor calculus is needed to treat such problems. This monograph describes the methods by which tensors can be practically treated and shows how numerical operations can be performed. Applications include problems from quantum chemistry, approximation of multivariate functions, solution of partial differential equations, for example with stochastic coefficients, and more. In addition to containing corrections of the unavoidable misprints, this revised second edition includes new parts ranging from single additional statements to new subchapters. The book is mainly addressed to numerical mathematicians and researchers working with high-dimensional data. It also touches problems related to Geometric Algebra.

Tensor Categories

Tensor Categories
Author: Pavel Etingof
Publisher: American Mathematical Soc.
Total Pages: 362
Release: 2016-08-05
Genre: Mathematics
ISBN: 1470434415

Is there a vector space whose dimension is the golden ratio? Of course not—the golden ratio is not an integer! But this can happen for generalizations of vector spaces—objects of a tensor category. The theory of tensor categories is a relatively new field of mathematics that generalizes the theory of group representations. It has deep connections with many other fields, including representation theory, Hopf algebras, operator algebras, low-dimensional topology (in particular, knot theory), homotopy theory, quantum mechanics and field theory, quantum computation, theory of motives, etc. This book gives a systematic introduction to this theory and a review of its applications. While giving a detailed overview of general tensor categories, it focuses especially on the theory of finite tensor categories and fusion categories (in particular, braided and modular ones), and discusses the main results about them with proofs. In particular, it shows how the main properties of finite-dimensional Hopf algebras may be derived from the theory of tensor categories. Many important results are presented as a sequence of exercises, which makes the book valuable for students and suitable for graduate courses. Many applications, connections to other areas, additional results, and references are discussed at the end of each chapter.

Tensor Methods in Statistics

Tensor Methods in Statistics
Author: Peter McCullagh
Publisher: Courier Dover Publications
Total Pages: 308
Release: 2018-07-18
Genre: Mathematics
ISBN: 0486832694

A pioneering monograph on tensor methods applied to distributional problems arising in statistics, this work begins with the study of multivariate moments and cumulants. An invaluable reference for graduate students and professional statisticians. 1987 edition.

Tensor Spaces and Numerical Tensor Calculus

Tensor Spaces and Numerical Tensor Calculus
Author: Wolfgang Hackbusch
Publisher: Springer Science & Business Media
Total Pages: 525
Release: 2012-02-23
Genre: Mathematics
ISBN: 3642280277

Special numerical techniques are already needed to deal with nxn matrices for large n.Tensor data are of size nxnx...xn=n^d, where n^d exceeds the computer memory by far. They appear for problems of high spatial dimensions. Since standard methods fail, a particular tensor calculus is needed to treat such problems. The monograph describes the methods how tensors can be practically treated and how numerical operations can be performed. Applications are problems from quantum chemistry, approximation of multivariate functions, solution of pde, e.g., with stochastic coefficients, etc. ​