Matrix Analysis And Applied Linear Algebra Second Edition
Download Matrix Analysis And Applied Linear Algebra Second Edition full books in PDF, epub, and Kindle. Read online free Matrix Analysis And Applied Linear Algebra Second Edition ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Carl D. Meyer |
Publisher | : SIAM |
Total Pages | : 729 |
Release | : 2000-06-01 |
Genre | : Mathematics |
ISBN | : 0898714540 |
This book avoids the traditional definition-theorem-proof format; instead a fresh approach introduces a variety of problems and examples all in a clear and informal style. The in-depth focus on applications separates this book from others, and helps students to see how linear algebra can be applied to real-life situations. Some of the more contemporary topics of applied linear algebra are included here which are not normally found in undergraduate textbooks. Theoretical developments are always accompanied with detailed examples, and each section ends with a number of exercises from which students can gain further insight. Moreover, the inclusion of historical information provides personal insights into the mathematicians who developed this subject. The textbook contains numerous examples and exercises, historical notes, and comments on numerical performance and the possible pitfalls of algorithms. Solutions to all of the exercises are provided, as well as a CD-ROM containing a searchable copy of the textbook.
Author | : Thomas S. Shores |
Publisher | : Springer Science & Business Media |
Total Pages | : 394 |
Release | : 2007-03-12 |
Genre | : Mathematics |
ISBN | : 0387489479 |
This new book offers a fresh approach to matrix and linear algebra by providing a balanced blend of applications, theory, and computation, while highlighting their interdependence. Intended for a one-semester course, Applied Linear Algebra and Matrix Analysis places special emphasis on linear algebra as an experimental science, with numerous examples, computer exercises, and projects. While the flavor is heavily computational and experimental, the text is independent of specific hardware or software platforms. Throughout the book, significant motivating examples are woven into the text, and each section ends with a set of exercises.
Author | : Peter J. Olver |
Publisher | : Springer |
Total Pages | : 702 |
Release | : 2018-05-30 |
Genre | : Mathematics |
ISBN | : 3319910418 |
This textbook develops the essential tools of linear algebra, with the goal of imparting technique alongside contextual understanding. Applications go hand-in-hand with theory, each reinforcing and explaining the other. This approach encourages students to develop not only the technical proficiency needed to go on to further study, but an appreciation for when, why, and how the tools of linear algebra can be used across modern applied mathematics. Providing an extensive treatment of essential topics such as Gaussian elimination, inner products and norms, and eigenvalues and singular values, this text can be used for an in-depth first course, or an application-driven second course in linear algebra. In this second edition, applications have been updated and expanded to include numerical methods, dynamical systems, data analysis, and signal processing, while the pedagogical flow of the core material has been improved. Throughout, the text emphasizes the conceptual connections between each application and the underlying linear algebraic techniques, thereby enabling students not only to learn how to apply the mathematical tools in routine contexts, but also to understand what is required to adapt to unusual or emerging problems. No previous knowledge of linear algebra is needed to approach this text, with single-variable calculus as the only formal prerequisite. However, the reader will need to draw upon some mathematical maturity to engage in the increasing abstraction inherent to the subject. Once equipped with the main tools and concepts from this book, students will be prepared for further study in differential equations, numerical analysis, data science and statistics, and a broad range of applications. The first author’s text, Introduction to Partial Differential Equations, is an ideal companion volume, forming a natural extension of the linear mathematical methods developed here.
Author | : Stephen Boyd |
Publisher | : Cambridge University Press |
Total Pages | : 477 |
Release | : 2018-06-07 |
Genre | : Business & Economics |
ISBN | : 1316518965 |
A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.
Author | : Carl Dean Meyer |
Publisher | : |
Total Pages | : 0 |
Release | : 2023 |
Genre | : Algebras, Linear |
ISBN | : 9781611977431 |
"Matrix Analysis and Applied Linear Algebra, Second Edition circumvents the traditional definition-theorem-proof format, and includes topics not normally found in undergraduate textbooks. Taking readers from elementary to advanced aspects of the subject, the authors covers both theory and applications. The theoretical development is rigorous and linear, obviating the need for circular or non-sequential references. An abundance of examples and a rich variety of applications will help students gain further insight into the subject. A study and solutions guide is also available"--
Author | : Stephan Ramon Garcia |
Publisher | : Cambridge University Press |
Total Pages | : 447 |
Release | : 2017-05-11 |
Genre | : Mathematics |
ISBN | : 1107103819 |
A second course in linear algebra for undergraduates in mathematics, computer science, physics, statistics, and the biological sciences.
Author | : Sudipto Banerjee |
Publisher | : CRC Press |
Total Pages | : 586 |
Release | : 2014-06-06 |
Genre | : Mathematics |
ISBN | : 1420095382 |
Linear Algebra and Matrix Analysis for Statistics offers a gradual exposition to linear algebra without sacrificing the rigor of the subject. It presents both the vector space approach and the canonical forms in matrix theory. The book is as self-contained as possible, assuming no prior knowledge of linear algebra. The authors first address the rudimentary mechanics of linear systems using Gaussian elimination and the resulting decompositions. They introduce Euclidean vector spaces using less abstract concepts and make connections to systems of linear equations wherever possible. After illustrating the importance of the rank of a matrix, they discuss complementary subspaces, oblique projectors, orthogonality, orthogonal projections and projectors, and orthogonal reduction. The text then shows how the theoretical concepts developed are handy in analyzing solutions for linear systems. The authors also explain how determinants are useful for characterizing and deriving properties concerning matrices and linear systems. They then cover eigenvalues, eigenvectors, singular value decomposition, Jordan decomposition (including a proof), quadratic forms, and Kronecker and Hadamard products. The book concludes with accessible treatments of advanced topics, such as linear iterative systems, convergence of matrices, more general vector spaces, linear transformations, and Hilbert spaces.
Author | : Robert R. Stoll |
Publisher | : Courier Corporation |
Total Pages | : 290 |
Release | : 2012-10-17 |
Genre | : Mathematics |
ISBN | : 0486623181 |
Advanced undergraduate and first-year graduate students have long regarded this text as one of the best available works on matrix theory in the context of modern algebra. Teachers and students will find it particularly suited to bridging the gap between ordinary undergraduate mathematics and completely abstract mathematics. The first five chapters treat topics important to economics, psychology, statistics, physics, and mathematics. Subjects include equivalence relations for matrixes, postulational approaches to determinants, and bilinear, quadratic, and Hermitian forms in their natural settings. The final chapters apply chiefly to students of engineering, physics, and advanced mathematics. They explore groups and rings, canonical forms for matrixes with respect to similarity via representations of linear transformations, and unitary and Euclidean vector spaces. Numerous examples appear throughout the text.
Author | : Roger A. Horn |
Publisher | : Cambridge University Press |
Total Pages | : 580 |
Release | : 1990-02-23 |
Genre | : Mathematics |
ISBN | : 9780521386326 |
Matrix Analysis presents the classical and recent results for matrix analysis that have proved to be important to applied mathematics.
Author | : Lorenzo Adlai Sadun |
Publisher | : American Mathematical Soc. |
Total Pages | : 394 |
Release | : 2007-12-20 |
Genre | : Mathematics |
ISBN | : 0821844415 |
Linear algebra permeates mathematics, as well as physics and engineering. In this text for junior and senior undergraduates, Sadun treats diagonalization as a central tool in solving complicated problems in these subjects by reducing coupled linear evolution problems to a sequence of simpler decoupled problems. This is the Decoupling Principle. Traditionally, difference equations, Markov chains, coupled oscillators, Fourier series, the wave equation, the Schrodinger equation, and Fourier transforms are treated separately, often in different courses. Here, they are treated as particular instances of the decoupling principle, and their solutions are remarkably similar. By understanding this general principle and the many applications given in the book, students will be able to recognize it and to apply it in many other settings. Sadun includes some topics relating to infinite-dimensional spaces. He does not present a general theory, but enough so as to apply the decoupling principle to the wave equation, leading to Fourier series and the Fourier transform. The second edition contains a series of Explorations. Most are numerical labs in which the reader is asked to use standard computer software to look deeper into the subject. Some explorations are theoretical, for instance, relating linear algebra to quantum mechanics. There is also an appendix reviewing basic matrix operations and another with solutions to a third of the exercises.