Mathematics ( Paper 1 ) Metric Spaces & Complex Analysis

Mathematics ( Paper 1 ) Metric Spaces & Complex Analysis
Author: Dr. Anil Kumar Tiwari
Publisher: Thakur Publication Private Limited
Total Pages: 352
Release: 2024-04-01
Genre: Education
ISBN: 9357557334

Buy Latest Mathematics ( Paper 1 ) Metric Spaces & Complex Analysis e-Book for B.Sc 6th Semester UP State Universities By Thakur publication.

Metric Spaces

Metric Spaces
Author: Satish Shirali
Publisher: Springer Science & Business Media
Total Pages: 238
Release: 2006
Genre: Mathematics
ISBN: 9781852339227

One of the first books to be dedicated specifically to metric spaces Full of worked examples, to get complex ideas across more easily

Harmonic Analysis, Partial Differential Equations, Complex Analysis, Banach Spaces, and Operator Theory (Volume 1)

Harmonic Analysis, Partial Differential Equations, Complex Analysis, Banach Spaces, and Operator Theory (Volume 1)
Author: María Cristina Pereyra
Publisher: Springer
Total Pages: 380
Release: 2016-09-15
Genre: Mathematics
ISBN: 3319309617

Covering a range of subjects from operator theory and classical harmonic analysis to Banach space theory, this book contains survey and expository articles by leading experts in their corresponding fields, and features fully-refereed, high-quality papers exploring new results and trends in spectral theory, mathematical physics, geometric function theory, and partial differential equations. Graduate students and researchers in analysis will find inspiration in the articles collected in this volume, which emphasize the remarkable connections between harmonic analysis and operator theory. Another shared research interest of the contributors of this volume lies in the area of applied harmonic analysis, where a new notion called chromatic derivatives has recently been introduced in communication engineering. The material for this volume is based on the 13th New Mexico Analysis Seminar held at the University of New Mexico, April 3-4, 2014 and on several special sections of the Western Spring Sectional Meeting at the University of New Mexico, April 4-6, 2014. During the event, participants honored the memory of Cora Sadosky—a great mathematician who recently passed away and who made significant contributions to the field of harmonic analysis. Cora was an exceptional mathematician and human being. She was a world expert in harmonic analysis and operator theory, publishing over fifty-five research papers and authoring a major textbook in the field. Participants of the conference include new and senior researchers, recent doctorates as well as leading experts in the area.

Contemporary Aspects Of Complex Analysis, Differential Geometry And Mathematical Physics - Procs Of The 7th Int'l Workshop On Complex Structures And Vector Fields

Contemporary Aspects Of Complex Analysis, Differential Geometry And Mathematical Physics - Procs Of The 7th Int'l Workshop On Complex Structures And Vector Fields
Author: Stancho Dimiev
Publisher: World Scientific
Total Pages: 358
Release: 2005-07-04
Genre: Mathematics
ISBN: 9814479977

This volume presents the cutting-edge contributions to the Seventh International Workshop on Complex Structures and Vector Fields, which was organized as a continuation of the high successful preceding workshops on similar research.The volume includes works treating ambitious topics in differential geometry, mathematical physics and technology such as Bézier curves in space forms, potential and catastrophy of a soap film, computer-assisted studies of logistic maps, and robotics.

Invariant Distances and Metrics in Complex Analysis

Invariant Distances and Metrics in Complex Analysis
Author: Marek Jarnicki
Publisher: Walter de Gruyter
Total Pages: 421
Release: 2011-05-03
Genre: Mathematics
ISBN: 3110870312

The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany

Metrical and Dynamical Aspects in Complex Analysis

Metrical and Dynamical Aspects in Complex Analysis
Author: Léa Blanc-Centi
Publisher: Springer
Total Pages: 184
Release: 2017-11-03
Genre: Mathematics
ISBN: 3319658379

The central theme of this reference book is the metric geometry of complex analysis in several variables. Bridging a gap in the current literature, the text focuses on the fine behavior of the Kobayashi metric of complex manifolds and its relationships to dynamical systems, hyperbolicity in the sense of Gromov and operator theory, all very active areas of research. The modern points of view expressed in these notes, collected here for the first time, will be of interest to academics working in the fields of several complex variables and metric geometry. The different topics are treated coherently and include expository presentations of the relevant tools, techniques and objects, which will be particularly useful for graduate and PhD students specializing in the area.

Complex Analysis and Dynamical Systems IV

Complex Analysis and Dynamical Systems IV
Author: Mark Lʹvovich Agranovskiĭ
Publisher: American Mathematical Soc.
Total Pages: 346
Release: 2011
Genre: Mathematics
ISBN: 0821851969

The papers in this volume cover a wide variety of topics in the geometric theory of functions of one and several complex variables, including univalent functions, conformal and quasiconformal mappings, and dynamics in infinite-dimensional spaces. In addition, there are several articles dealing with various aspects of Lie groups, control theory, and optimization. Taken together, the articles provide the reader with a panorama of activity in complex analysis and quasiconformal mappings, drawn by a number of leading figures in the field. The companion volume (Contemporary Mathematics, Volume 554) is devoted to general relativity, geometry, and PDE.

Complex Analysis with Applications to Number Theory

Complex Analysis with Applications to Number Theory
Author: Tarlok Nath Shorey
Publisher: Springer Nature
Total Pages: 287
Release: 2020-11-13
Genre: Mathematics
ISBN: 9811590974

The book discusses major topics in complex analysis with applications to number theory. This book is intended as a text for graduate students of mathematics and undergraduate students of engineering, as well as to researchers in complex analysis and number theory. This theory is a prerequisite for the study of many areas of mathematics, including the theory of several finitely and infinitely many complex variables, hyperbolic geometry, two and three manifolds and number theory. In additional to solved examples and problems, the book covers most of the topics of current interest, such as Cauchy theorems, Picard’s theorems, Riemann–Zeta function, Dirichlet theorem, gamma function and harmonic functions.

Lipschitz Algebras

Lipschitz Algebras
Author: Nik Weaver
Publisher: World Scientific
Total Pages: 242
Release: 1999
Genre: Mathematics
ISBN: 9789810238735

The Lipschitz algebras Lp(M), for M a complete metric space, are quite analogous to the spaces C(omega) and Linfinity(X), for omega a compact Hausdorff space and X a sigma-finite measure space. Although the Lipschitz algebras have not been studied as thoroughly as these better-known cousins, it is becoming increasingly clear that they play a fundamental role in functional analysis, and are also useful in many applications, especially in the direction of metric geometry. This book gives a comprehensive treatment of (what is currently known about) the beautiful theory of these algebras.

Complex Analysis and Potential Theory

Complex Analysis and Potential Theory
Author: Andre Boivin
Publisher: American Mathematical Soc.
Total Pages: 347
Release: 2012
Genre: Mathematics
ISBN: 0821891731

This is the proceedings volume of an international conference entitled Complex Analysis and Potential Theory, which was held to honor the important contributions of two influential analysts, Kohur N. GowriSankaran and Paul M. Gauthier, in June 2011 at the Centre de Recherches Mathematiques (CRM) in Montreal. More than fifty mathematicians from fifteen countries participated in the conference. The twenty-four surveys and research articles contained in this book are based on the lectures given by some of the most established specialists in the fields. They reflect the wide breadth of research interests of the two honorees: from potential theory on trees to approximation on Riemann surfaces, from universality to inner and outer functions and the disc algebra, from branching processes to harmonic extension and capacities, from harmonic mappings and the Harnack principle to integration formulae in $\mathbb {C}^n$ and the Hartogs phenomenon, from fine harmonicity and plurisubharmonic functions to the binomial identity and the Riemann hypothesis, and more. This volume will be a valuable resource for specialists, young researchers, and graduate students from both fields, complex analysis and potential theory. It will foster further cooperation and the exchange of ideas and techniques to find new research perspectives.