Mathematics of Random Phenomena

Mathematics of Random Phenomena
Author: P. Krée
Publisher: Springer Science & Business Media
Total Pages: 452
Release: 2012-12-06
Genre: Science
ISBN: 9400947704

Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes.

Random Phenomena

Random Phenomena
Author: Babatunde A. Ogunnaike
Publisher: CRC Press
Total Pages: 1061
Release: 2011-05-20
Genre: Technology & Engineering
ISBN: 1420044982

Many of the problems that engineers face involve randomly varying phenomena of one sort or another. However, if characterized properly, even such randomness and the resulting uncertainty are subject to rigorous mathematical analysis. Taking into account the uniquely multidisciplinary demands of 21st-century science and engineering, Random Phenomena: Fundamentals of Probability and Statistics for Engineers provides students with a working knowledge of how to solve engineering problems that involve randomly varying phenomena. Basing his approach on the principle of theoretical foundations before application, Dr. Ogunnaike presents a classroom-tested course of study that explains how to master and use probability and statistics appropriately to deal with uncertainty in standard problems and those that are new and unfamiliar. Giving students the tools and confidence to formulate practical solutions to problems, this book offers many useful features, including: Unique case studies to illustrate the fundamentals and applications of probability and foster understanding of the random variable and its distribution Examples of development, selection, and analysis of probability models for specific random variables Presentation of core concepts and ideas behind statistics and design of experiments Selected "special topics," including reliability and life testing, quality assurance and control, and multivariate analysis As classic scientific boundaries continue to be restructured, the use of engineering is spilling over into more non-traditional areas, ranging from molecular biology to finance. This book emphasizes fundamentals and a "first principles" approach to deal with this evolution. It illustrates theory with practical examples and case studies, equipping readers to deal with a wide range of problems beyond those in the book. About the Author: Professor Ogunnaike is Interim Dean of Engineering at the University of Delaware. He is the recipient of the 2008 American Automatic Control Council's Control Engineering Practice Award, the ISA's Donald P. Eckman Education Award, the Slocomb Excellence in Teaching Award, and was elected into the US National Academy of Engineering in 2012.

What Is Random?

What Is Random?
Author: Edward Beltrami
Publisher: Springer Nature
Total Pages: 192
Release: 2020-07-30
Genre: Mathematics
ISBN: 1071607995

In this fascinating book, mathematician Ed Beltrami takes a close enough look at randomness to make it mysteriously disappear. The results of coin tosses, it turns out, are determined from the start, and only our incomplete knowledge makes them look random. "Random" sequences of numbers are more elusive, but Godels undecidability theorem informs us that we will never know. Those familiar with quantum indeterminacy assert that order is an illusion, and that the world is fundamentally random. Yet randomness is also an illusion. Perhaps order and randomness, like waves and particles, are only two sides of the same (tossed) coin.

Mathematical Analysis Of Random Phenomena - Proceedings Of The International Conference

Mathematical Analysis Of Random Phenomena - Proceedings Of The International Conference
Author: Ana Bela Cruzeiro
Publisher: World Scientific
Total Pages: 241
Release: 2007-04-04
Genre: Mathematics
ISBN: 9814475696

This volume highlights recent developments of stochastic analysis with a wide spectrum of applications, including stochastic differential equations, stochastic geometry, and nonlinear partial differential equations.While modern stochastic analysis may appear to be an abstract mixture of classical analysis and probability theory, this book shows that, in fact, it can provide versatile tools useful in many areas of applied mathematics where the phenomena being described are random. The geometrical aspects of stochastic analysis, often regarded as the most promising for applications, are specially investigated by various contributors to the volume.

Mathematical Modeling of Random and Deterministic Phenomena

Mathematical Modeling of Random and Deterministic Phenomena
Author: Solym Mawaki Manou-Abi
Publisher: John Wiley & Sons
Total Pages: 308
Release: 2020-04-28
Genre: Mathematics
ISBN: 1786304546

This book highlights mathematical research interests that appear in real life, such as the study and modeling of random and deterministic phenomena. As such, it provides current research in mathematics, with applications in biological and environmental sciences, ecology, epidemiology and social perspectives. The chapters can be read independently of each other, with dedicated references specific to each chapter. The book is organized in two main parts. The first is devoted to some advanced mathematical problems regarding epidemic models; predictions of biomass; space-time modeling of extreme rainfall; modeling with the piecewise deterministic Markov process; optimal control problems; evolution equations in a periodic environment; and the analysis of the heat equation. The second is devoted to a modelization with interdisciplinarity in ecological, socio-economic, epistemological, demographic and social problems. Mathematical Modeling of Random and Deterministic Phenomena is aimed at expert readers, young researchers, plus graduate and advanced undergraduate students who are interested in probability, statistics, modeling and mathematical analysis.

Probability: A Graduate Course

Probability: A Graduate Course
Author: Allan Gut
Publisher: Springer Science & Business Media
Total Pages: 617
Release: 2006-03-16
Genre: Mathematics
ISBN: 0387273328

This textbook on the theory of probability starts from the premise that rather than being a purely mathematical discipline, probability theory is an intimate companion of statistics. The book starts with the basic tools, and goes on to cover a number of subjects in detail, including chapters on inequalities, characteristic functions and convergence. This is followed by explanations of the three main subjects in probability: the law of large numbers, the central limit theorem, and the law of the iterated logarithm. After a discussion of generalizations and extensions, the book concludes with an extensive chapter on martingales.

High-Dimensional Probability

High-Dimensional Probability
Author: Roman Vershynin
Publisher: Cambridge University Press
Total Pages: 299
Release: 2018-09-27
Genre: Business & Economics
ISBN: 1108415199

An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.

Random Functions and Hydrology

Random Functions and Hydrology
Author: Rafael L. Bras
Publisher: Courier Corporation
Total Pages: 580
Release: 1993-01-01
Genre: Technology & Engineering
ISBN: 9780486676265

Advanced-level view of the tools of random processes and field theory as applied to the analysis and synthesis of hydrologic phenomena. Topics include time-series analysis, optimal estimation, optimal interpolation (Kriging), frequency-domain analysis of signals, and linear systems theory. Techniques and examples chosen to illustrate the latest advances in hydrologic signal analysis. Useable as graduate-level text in water resource systems, stochastic hydrology, random processes and signal analysis. 202 illustrations.

Introduction to Probability

Introduction to Probability
Author: David F. Anderson
Publisher: Cambridge University Press
Total Pages: 447
Release: 2017-11-02
Genre: Mathematics
ISBN: 110824498X

This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.

Intersections of Random Walks

Intersections of Random Walks
Author: Gregory F. Lawler
Publisher: Springer Science & Business Media
Total Pages: 226
Release: 2012-11-06
Genre: Mathematics
ISBN: 1461459729

A central study in Probability Theory is the behavior of fluctuation phenomena of partial sums of different types of random variable. One of the most useful concepts for this purpose is that of the random walk which has applications in many areas, particularly in statistical physics and statistical chemistry. Originally published in 1991, Intersections of Random Walks focuses on and explores a number of problems dealing primarily with the nonintersection of random walks and the self-avoiding walk. Many of these problems arise in studying statistical physics and other critical phenomena. Topics include: discrete harmonic measure, including an introduction to diffusion limited aggregation (DLA); the probability that independent random walks do not intersect; and properties of walks without self-intersections. The present softcover reprint includes corrections and addenda from the 1996 printing, and makes this classic monograph available to a wider audience. With a self-contained introduction to the properties of simple random walks, and an emphasis on rigorous results, the book will be useful to researchers in probability and statistical physics and to graduate students interested in basic properties of random walks.