Mathematical Thinking and Writing

Mathematical Thinking and Writing
Author: Randall Maddox
Publisher: Academic Press
Total Pages: 324
Release: 2002
Genre: Mathematics
ISBN: 0124649769

The ability to construct proofs is one of the most challenging aspects of the world of mathematics. It is, essentially, the defining moment for those testing the waters in a mathematical career. Instead of being submerged to the point of drowning, readers of Mathematical Thinking and Writing are given guidance and support while learning the language of proof construction and critical analysis. Randall Maddox guides the reader with a warm, conversational style, through the task of gaining a thorough understanding of the proof process, and encourages inexperienced mathematicians to step up and learn how to think like a mathematician. A student's skills in critical analysis will develop and become more polished than previously conceived. Most significantly, Dr. Maddox has the unique approach of using analogy within his book to clarify abstract ideas and clearly demonstrate methods of mathematical precision.

A Transition to Abstract Mathematics

A Transition to Abstract Mathematics
Author: Randall Maddox
Publisher: Academic Press
Total Pages: 379
Release: 2008-10-13
Genre: Mathematics
ISBN: 0080922716

Constructing concise and correct proofs is one of the most challenging aspects of learning to work with advanced mathematics. Meeting this challenge is a defining moment for those considering a career in mathematics or related fields. A Transition to Abstract Mathematics teaches readers to construct proofs and communicate with the precision necessary for working with abstraction. It is based on two premises: composing clear and accurate mathematical arguments is critical in abstract mathematics, and that this skill requires development and support. Abstraction is the destination, not the starting point.Maddox methodically builds toward a thorough understanding of the proof process, demonstrating and encouraging mathematical thinking along the way. Skillful use of analogy clarifies abstract ideas. Clearly presented methods of mathematical precision provide an understanding of the nature of mathematics and its defining structure. After mastering the art of the proof process, the reader may pursue two independent paths. The latter parts are purposefully designed to rest on the foundation of the first, and climb quickly into analysis or algebra. Maddox addresses fundamental principles in these two areas, so that readers can apply their mathematical thinking and writing skills to these new concepts. From this exposure, readers experience the beauty of the mathematical landscape and further develop their ability to work with abstract ideas. - Covers the full range of techniques used in proofs, including contrapositive, induction, and proof by contradiction - Explains identification of techniques and how they are applied in the specific problem - Illustrates how to read written proofs with many step by step examples - Includes 20% more exercises than the first edition that are integrated into the material instead of end of chapter

Mathematical Reasoning

Mathematical Reasoning
Author: Theodore A. Sundstrom
Publisher: Prentice Hall
Total Pages: 0
Release: 2007
Genre: Logic, Symbolic and mathematical
ISBN: 9780131877184

Focusing on the formal development of mathematics, this book shows readers how to read, understand, write, and construct mathematical proofs.Uses elementary number theory and congruence arithmetic throughout. Focuses on writing in mathematics. Reviews prior mathematical work with “Preview Activities” at the start of each section. Includes “Activities” throughout that relate to the material contained in each section. Focuses on Congruence Notation and Elementary Number Theorythroughout.For professionals in the sciences or engineering who need to brush up on their advanced mathematics skills. Mathematical Reasoning: Writing and Proof, 2/E Theodore Sundstrom

How Not to Be Wrong

How Not to Be Wrong
Author: Jordan Ellenberg
Publisher: Penguin Press
Total Pages: 480
Release: 2014-05-29
Genre: Mathematics
ISBN: 1594205221

A brilliant tour of mathematical thought and a guide to becoming a better thinker, How Not to Be Wrong shows that math is not just a long list of rules to be learned and carried out by rote. Math touches everything we do; It's what makes the world make sense. Using the mathematician's methods and hard-won insights-minus the jargon-professor and popular columnist Jordan Ellenberg guides general readers through his ideas with rigor and lively irreverence, infusing everything from election results to baseball to the existence of God and the psychology of slime molds with a heightened sense of clarity and wonder. Armed with the tools of mathematics, we can see the hidden structures beneath the messy and chaotic surface of our daily lives. How Not to Be Wrong shows us how--Publisher's description.

Mathematical Writing

Mathematical Writing
Author: Donald E. Knuth
Publisher: Cambridge University Press
Total Pages: 132
Release: 1989
Genre: Language Arts & Disciplines
ISBN: 9780883850633

This book will help those wishing to teach a course in technical writing, or who wish to write themselves.

Introduction to Mathematical Thinking

Introduction to Mathematical Thinking
Author: Keith J. Devlin
Publisher:
Total Pages: 0
Release: 2012
Genre: Mathematics
ISBN: 9780615653631

"Mathematical thinking is not the same as 'doing math'--unless you are a professional mathematician. For most people, 'doing math' means the application of procedures and symbolic manipulations. Mathematical thinking, in contrast, is what the name reflects, a way of thinking about things in the world that humans have developed over three thousand years. It does not have to be about mathematics at all, which means that many people can benefit from learning this powerful way of thinking, not just mathematicians and scientists."--Back cover.

Mathematical Thinking and Communication

Mathematical Thinking and Communication
Author: Mark Driscoll
Publisher: Heinemann Educational Books
Total Pages: 0
Release: 2016
Genre: Education
ISBN: 9780325074771

Language is deeply involved in learning mathematics as students both communicate and think about mathematical ideas. Because of this, teachers of English learners have particular challenges to overcome. Mathematical Thinking and Communication addresses perhaps the most significant challenge: providing access to mathematics for these students. For all students-and English learners in particular-access means finding effective, authentic ways to make language clear and thinking visible so they can reason more, speak more, and write more in mathematics. Based on extensive research and collaboration with teachers, coaches, and schools, Mark Driscoll, Johannah Nikula, and Jill Neumayer DePiper outline four principles for designing instruction that creates this kind of access: challenging tasks, multimodal representations, development of mathematical communication, and repeated structured practice. Starting from the perspective that English learners are capable of mathematical thinking (even as they are learning to express their ideas verbally), the authors highlight techniques for using gestures, drawings, models, manipulatives, and technology as tools for reasoning and communication. By embedding these visual representations into instruction-and encouraging their regular use-teachers support engagement in problem solving, facilitate mathematical dialogue, and notice evidence of students' thinking that propels them to create more engaging and equitable instruction. Enhanced by an extensive online collection of companion professional development resources, this book highlights classroom-ready strategies and routines for fostering mathematics success in all students and helping them recognize their potential.

Mathematical Thinking and Problem Solving

Mathematical Thinking and Problem Solving
Author: Alan H. Schoenfeld
Publisher: Routledge
Total Pages: 303
Release: 2016-05-06
Genre: Education
ISBN: 113544093X

In the early 1980s there was virtually no serious communication among the various groups that contribute to mathematics education -- mathematicians, mathematics educators, classroom teachers, and cognitive scientists. Members of these groups came from different traditions, had different perspectives, and rarely gathered in the same place to discuss issues of common interest. Part of the problem was that there was no common ground for the discussions -- given the disparate traditions and perspectives. As one way of addressing this problem, the Sloan Foundation funded two conferences in the mid-1980s, bringing together members of the different communities in a ground clearing effort, designed to establish a base for communication. In those conferences, interdisciplinary teams reviewed major topic areas and put together distillations of what was known about them.* A more recent conference -- upon which this volume is based -- offered a forum in which various people involved in education reform would present their work, and members of the broad communities gathered would comment on it. The focus was primarily on college mathematics, informed by developments in K-12 mathematics. The main issues of the conference were mathematical thinking and problem solving.

Building Thinking Classrooms in Mathematics, Grades K-12

Building Thinking Classrooms in Mathematics, Grades K-12
Author: Peter Liljedahl
Publisher: Corwin Press
Total Pages: 454
Release: 2020-09-28
Genre: Education
ISBN: 1544374844

A thinking student is an engaged student Teachers often find it difficult to implement lessons that help students go beyond rote memorization and repetitive calculations. In fact, institutional norms and habits that permeate all classrooms can actually be enabling "non-thinking" student behavior. Sparked by observing teachers struggle to implement rich mathematics tasks to engage students in deep thinking, Peter Liljedahl has translated his 15 years of research into this practical guide on how to move toward a thinking classroom. Building Thinking Classrooms in Mathematics, Grades K–12 helps teachers implement 14 optimal practices for thinking that create an ideal setting for deep mathematics learning to occur. This guide Provides the what, why, and how of each practice and answers teachers’ most frequently asked questions Includes firsthand accounts of how these practices foster thinking through teacher and student interviews and student work samples Offers a plethora of macro moves, micro moves, and rich tasks to get started Organizes the 14 practices into four toolkits that can be implemented in order and built on throughout the year When combined, these unique research-based practices create the optimal conditions for learner-centered, student-owned deep mathematical thinking and learning, and have the power to transform mathematics classrooms like never before.