Mathematical Theory Of Incompressible Nonviscous Fluids
Download Mathematical Theory Of Incompressible Nonviscous Fluids full books in PDF, epub, and Kindle. Read online free Mathematical Theory Of Incompressible Nonviscous Fluids ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Carlo Marchioro |
Publisher | : Springer Science & Business Media |
Total Pages | : 304 |
Release | : 1993-11-05 |
Genre | : Mathematics |
ISBN | : 9780387940441 |
Fluid dynamics is an ancient science incredibly alive today. Modern technol ogy and new needs require a deeper knowledge of the behavior of real fluids, and new discoveries or steps forward pose, quite often, challenging and diffi cult new mathematical {::oblems. In this framework, a special role is played by incompressible nonviscous (sometimes called perfect) flows. This is a mathematical model consisting essentially of an evolution equation (the Euler equation) for the velocity field of fluids. Such an equation, which is nothing other than the Newton laws plus some additional structural hypo theses, was discovered by Euler in 1755, and although it is more than two centuries old, many fundamental questions concerning its solutions are still open. In particular, it is not known whether the solutions, for reasonably general initial conditions, develop singularities in a finite time, and very little is known about the long-term behavior of smooth solutions. These and other basic problems are still open, and this is one of the reasons why the mathe matical theory of perfect flows is far from being completed. Incompressible flows have been attached, by many distinguished mathe maticians, with a large variety of mathematical techniques so that, today, this field constitutes a very rich and stimulating part of applied mathematics.
Author | : Carlo Marchioro |
Publisher | : Springer Science & Business Media |
Total Pages | : 295 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461242843 |
Fluid dynamics is an ancient science incredibly alive today. Modern technol ogy and new needs require a deeper knowledge of the behavior of real fluids, and new discoveries or steps forward pose, quite often, challenging and diffi cult new mathematical {::oblems. In this framework, a special role is played by incompressible nonviscous (sometimes called perfect) flows. This is a mathematical model consisting essentially of an evolution equation (the Euler equation) for the velocity field of fluids. Such an equation, which is nothing other than the Newton laws plus some additional structural hypo theses, was discovered by Euler in 1755, and although it is more than two centuries old, many fundamental questions concerning its solutions are still open. In particular, it is not known whether the solutions, for reasonably general initial conditions, develop singularities in a finite time, and very little is known about the long-term behavior of smooth solutions. These and other basic problems are still open, and this is one of the reasons why the mathe matical theory of perfect flows is far from being completed. Incompressible flows have been attached, by many distinguished mathe maticians, with a large variety of mathematical techniques so that, today, this field constitutes a very rich and stimulating part of applied mathematics.
Author | : Carlo Marchioro |
Publisher | : |
Total Pages | : 283 |
Release | : 1999 |
Genre | : Fluid dynamics |
ISBN | : 9787506240727 |
Author | : Radyadour K. Zeytounian |
Publisher | : Springer Science & Business Media |
Total Pages | : 302 |
Release | : 2012-12-06 |
Genre | : Technology & Engineering |
ISBN | : 3642562159 |
From the reviews: "Researchers in fluid dynamics and applied mathematics will enjoy this book for its breadth of coverage, hands-on treatment of important ideas, many references, and historical and philosophical remarks." Mathematical Reviews
Author | : Andreas Kirsch |
Publisher | : Springer Science & Business Media |
Total Pages | : 304 |
Release | : 1996-09-26 |
Genre | : Science |
ISBN | : 9780387945309 |
Following Keller [119] we call two problems inverse to each other if the for mulation of each of them requires full or partial knowledge of the other. By this definition, it is obviously arbitrary which of the two problems we call the direct and which we call the inverse problem. But usually, one of the problems has been studied earlier and, perhaps, in more detail. This one is usually called the direct problem, whereas the other is the inverse problem. However, there is often another, more important difference between these two problems. Hadamard (see [91]) introduced the concept of a well-posed problem, originating from the philosophy that the mathematical model of a physical problem has to have the properties of uniqueness, existence, and stability of the solution. If one of the properties fails to hold, he called the problem ill-posed. It turns out that many interesting and important inverse in science lead to ill-posed problems, while the corresponding di problems rect problems are well-posed. Often, existence and uniqueness can be forced by enlarging or reducing the solution space (the space of "models"). For restoring stability, however, one has to change the topology of the spaces, which is in many cases impossible because of the presence of measurement errors. At first glance, it seems to be impossible to compute the solution of a problem numerically if the solution of the problem does not depend continuously on the data, i. e. , for the case of ill-posed problems.
Author | : Franco Flandoli |
Publisher | : Springer |
Total Pages | : 187 |
Release | : 2011-03-02 |
Genre | : Mathematics |
ISBN | : 3642182313 |
The book deals with the random perturbation of PDEs which lack well-posedness, mainly because of their non-uniqueness, in some cases because of blow-up. The aim is to show that noise may restore uniqueness or prevent blow-up. This is not a general or easy-to-apply rule, and the theory presented in the book is in fact a series of examples with a few unifying ideas. The role of additive and bilinear multiplicative noise is described and a variety of examples are included, from abstract parabolic evolution equations with non-Lipschitz nonlinearities to particular fluid dynamic models, like the dyadic model, linear transport equations and motion of point vortices.
Author | : Yuri Gliklikh |
Publisher | : Springer Science & Business Media |
Total Pages | : 221 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461218667 |
The first edition of this book entitled Analysis on Riemannian Manifolds and Some Problems of Mathematical Physics was published by Voronezh Univer sity Press in 1989. For its English edition, the book has been substantially revised and expanded. In particular, new material has been added to Sections 19 and 20. I am grateful to Viktor L. Ginzburg for his hard work on the transla tion and for writing Appendix F, and to Tomasz Zastawniak for his numerous suggestions. My special thanks go to the referee for his valuable remarks on the theory of stochastic processes. Finally, I would like to acknowledge the support of the AMS fSU Aid Fund and the International Science Foundation (Grant NZBOOO), which made possible my work on some of the new results included in the English edition of the book. Voronezh, Russia Yuri Gliklikh September, 1995 Preface to the Russian Edition The present book is apparently the first in monographic literature in which a common treatment is given to three areas of global analysis previously consid ered quite distant from each other, namely, differential geometry and classical mechanics, stochastic differential geometry and statistical and quantum me chanics, and infinite-dimensional differential geometry of groups of diffeomor phisms and hydrodynamics. The unification of these topics under the cover of one book appears, however, quite natural, since the exposition is based on a geometrically invariant form of the Newton equation and its analogs taken as a fundamental law of motion.
Author | : Robert Vein |
Publisher | : Springer Science & Business Media |
Total Pages | : 392 |
Release | : 2006-05-07 |
Genre | : Mathematics |
ISBN | : 0387227741 |
A unique and detailed account of all important relations in the analytic theory of determinants, from the classical work of Laplace, Cauchy and Jacobi to the latest 20th century developments. The first five chapters are purely mathematical in nature and make extensive use of the column vector notation and scaled cofactors. They contain a number of important relations involving derivatives which prove beyond a doubt that the theory of determinants has emerged from the confines of classical algebra into the brighter world of analysis. Chapter 6 is devoted to the verifications of the known determinantal solutions of several nonlinear equations which arise in three branches of mathematical physics, namely lattice, soliton and relativity theory. The solutions are verified by applying theorems established in earlier chapters, and the book ends with an extensive bibliography and index. Several contributions have never been published before. Indispensable for mathematicians, physicists and engineers wishing to become acquainted with this topic.
Author | : Gilles Aubert |
Publisher | : Springer Science & Business Media |
Total Pages | : 400 |
Release | : 2006-11-30 |
Genre | : Mathematics |
ISBN | : 0387445889 |
The updated 2nd edition of this book presents a variety of image analysis applications, reviews their precise mathematics and shows how to discretize them. For the mathematical community, the book shows the contribution of mathematics to this domain, and highlights unsolved theoretical questions. For the computer vision community, it presents a clear, self-contained and global overview of the mathematics involved in image procesing problems. The second edition offers a review of progress in image processing applications covered by the PDE framework, and updates the existing material. The book also provides programming tools for creating simulations with minimal effort.
Author | : Jacques-Louis Lions |
Publisher | : World Scientific |
Total Pages | : 316 |
Release | : 2004 |
Genre | : Mathematics |
ISBN | : 9789812562265 |
This invaluable volume is a collection of articles in memory ofJacques-Louis Lions, a leading mathematician and the founder of theContemporary French Applied Mathematics School. The contributions havebeen written by his friends, colleagues and students, including CBardos, A Bensoussan, S S Chern, P G Ciarlet, R Glowinski, Gu Chaohao, B Malgrange, G Marchuk, O Pironneau, W Strauss, R Temam, etc