Mathematical Methods in Quantum Mechanics

Mathematical Methods in Quantum Mechanics
Author: Gerald Teschl
Publisher: American Mathematical Soc.
Total Pages: 322
Release: 2009
Genre: Mathematics
ISBN: 0821846604

Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrodinger operators. Part 1 of the book is a concise introduction to the spectral theory of unbounded operators. Only those topics that will be needed for later applications are covered. The spectral theorem is a central topic in this approach and is introduced at an early stage. Part 2 starts with the free Schrodinger equation and computes the free resolvent and time evolution. Position, momentum, and angular momentum are discussed via algebraic methods. Various mathematical methods are developed, which are then used to compute the spectrum of the hydrogen atom. Further topics include the nondegeneracy of the ground state, spectra of atoms, and scattering theory. This book serves as a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required. In particular, no functional analysis and no Lebesgue integration theory are assumed. It develops the mathematical tools necessary to prove some key results in nonrelativistic quantum mechanics. Mathematical Methods in Quantum Mechanics is intended for beginning graduate students in both mathematics and physics and provides a solid foundation for reading more advanced books and current research literature. It is well suited for self-study and includes numerous exercises (many with hints).

Quantum Mechanics for Mathematicians

Quantum Mechanics for Mathematicians
Author: Leon Armenovich Takhtadzhi͡an
Publisher: American Mathematical Soc.
Total Pages: 410
Release: 2008
Genre: Mathematics
ISBN: 0821846302

Presents a comprehensive treatment of quantum mechanics from a mathematics perspective. Including traditional topics, like classical mechanics, mathematical foundations of quantum mechanics, quantization, and the Schrodinger equation, this book gives a mathematical treatment of systems of identical particles with spin.

Lectures on Quantum Mechanics for Mathematics Students

Lectures on Quantum Mechanics for Mathematics Students
Author: L. D. Faddeev
Publisher: American Mathematical Soc.
Total Pages: 250
Release: 2009
Genre: Science
ISBN: 082184699X

Describes the relation between classical and quantum mechanics. This book contains a discussion of problems related to group representation theory and to scattering theory. It intends to give a mathematically oriented student the opportunity to grasp the main points of quantum theory in a mathematical framework.

Mathematical Horizons for Quantum Physics

Mathematical Horizons for Quantum Physics
Author: Huzihiro Araki
Publisher: World Scientific
Total Pages: 221
Release: 2010
Genre: Science
ISBN: 9814313327

Control of the molecular alignment or orientation by laser pulses / Arne Keller -- Quantum computing and devices : A short introduction / Zhigang Zhang, Viswanath Ramakrishna and Goong Chen -- Dynamics of mixed classical-quantum systems, geometric quantization and coherent states / Hans-Rudolf Jauslin and Dominique Sugny -- Quantum memories as open systems / Robert Alicki -- Two mathematical problems in quantum information theory / Alexander S. Holevo -- Dissipatively induced bipartite entanglement / Fabio Benatti -- Scattering in nonrelativistic quantum field theory / Jan Derezinski -- Mathematical theory of atoms and molecules / Volker Bach

Mathematical Foundations of Quantum Mechanics

Mathematical Foundations of Quantum Mechanics
Author: John von Neumann
Publisher: Princeton University Press
Total Pages: 462
Release: 1955
Genre: Mathematics
ISBN: 9780691028934

A revolutionary book that for the first time provided a rigorous mathematical framework for quantum mechanics. -- Google books

Mathematics of Classical and Quantum Physics

Mathematics of Classical and Quantum Physics
Author: Frederick W. Byron
Publisher: Courier Corporation
Total Pages: 674
Release: 2012-04-26
Genre: Science
ISBN: 0486135063

Graduate-level text offers unified treatment of mathematics applicable to many branches of physics. Theory of vector spaces, analytic function theory, theory of integral equations, group theory, and more. Many problems. Bibliography.

Spectral Theory and Quantum Mechanics

Spectral Theory and Quantum Mechanics
Author: Valter Moretti
Publisher: Springer
Total Pages: 962
Release: 2018-01-30
Genre: Mathematics
ISBN: 331970706X

This book discusses the mathematical foundations of quantum theories. It offers an introductory text on linear functional analysis with a focus on Hilbert spaces, highlighting the spectral theory features that are relevant in physics. After exploring physical phenomenology, it then turns its attention to the formal and logical aspects of the theory. Further, this Second Edition collects in one volume a number of useful rigorous results on the mathematical structure of quantum mechanics focusing in particular on von Neumann algebras, Superselection rules, the various notions of Quantum Symmetry and Symmetry Groups, and including a number of fundamental results on the algebraic formulation of quantum theories. Intended for Master's and PhD students, both in physics and mathematics, the material is designed to be self-contained: it includes a summary of point-set topology and abstract measure theory, together with an appendix on differential geometry. The book also benefits established researchers by organizing and presenting the profusion of advanced material disseminated in the literature. Most chapters are accompanied by exercises, many of which are solved explicitly."

Physics and Mathematics of Quantum Many-Body Systems

Physics and Mathematics of Quantum Many-Body Systems
Author: Hal Tasaki
Publisher: Springer Nature
Total Pages: 534
Release: 2020-05-07
Genre: Technology & Engineering
ISBN: 3030412652

This book is a self-contained advanced textbook on the mathematical-physical aspects of quantum many-body systems, which begins with a pedagogical presentation of the necessary background information before moving on to subjects of active research, including topological phases of matter. The book explores in detail selected topics in quantum spin systems and lattice electron systems, namely, long-range order and spontaneous symmetry breaking in the antiferromagnetic Heisenberg model in two or higher dimensions (Part I), Haldane phenomena in antiferromagnetic quantum spin chains and related topics in topological phases of quantum matter (Part II), and the origin of magnetism in various versions of the Hubbard model (Part III). Each of these topics represents certain nontrivial phenomena or features that are invariably encountered in a variety of quantum many-body systems, including quantum field theory, condensed matter systems, cold atoms, and artificial quantum systems designed for future quantum computers. The book’s main focus is on universal properties of quantum many-body systems. The book includes roughly 50 problems with detailed solutions. The reader only requires elementary linear algebra and calculus to comprehend the material and work through the problems. Given its scope and format, the book is suitable both for self-study and as a textbook for graduate or advanced undergraduate classes.

Mathematical Results in Quantum Mechanics

Mathematical Results in Quantum Mechanics
Author: Pavel Exner
Publisher: American Mathematical Soc.
Total Pages: 362
Release: 2002
Genre: Mathematics
ISBN: 0821829009

This work contains contributions presented at the conference, QMath-8: Mathematical Results in Quantum Mechanics'', held at Universidad Nacional Autonoma de Mexico in December 2001. The articles cover a wide range of mathematical problems and focus on various aspects of quantum mechanics, quantum field theory and nuclear physics. Topics vary from spectral properties of the Schrodinger equation of various quantum systems to the analysis of quantum computation algorithms. The book should be suitable for graduate students and research mathematicians interested in the mathematical aspects of quantum mechanics.

Geometric Quantization and Quantum Mechanics

Geometric Quantization and Quantum Mechanics
Author: Jedrzej Sniatycki
Publisher: Springer Science & Business Media
Total Pages: 241
Release: 2012-12-06
Genre: Science
ISBN: 1461260663

This book contains a revised and expanded version of the lecture notes of two seminar series given during the academic year 1976/77 at the Department of Mathematics and Statistics of the University of Calgary, and in the summer of 1978 at the Institute of Theoretical Physics of the Technical University Clausthal. The aim of the seminars was to present geometric quantization from the point of view· of its applica tions to quantum mechanics, and to introduce the quantum dynamics of various physical systems as the result of the geometric quantization of the classical dynamics of these systems. The group representation aspects of geometric quantiza tion as well as proofs of the existence and the uniqueness of the introduced structures can be found in the expository papers of Blattner, Kostant, Sternberg and Wolf, and also in the references quoted in these papers. The books of Souriau (1970) and Simms and Woodhouse (1976) present the theory of geometric quantization and its relationship to quantum mech anics. The purpose of the present book is to complement the preceding ones by including new developments of the theory and emphasizing the computations leading to results in quantum mechanics.