Mathematical Methods For The Natural And Engineering Sciences Second Edition
Download Mathematical Methods For The Natural And Engineering Sciences Second Edition full books in PDF, epub, and Kindle. Read online free Mathematical Methods For The Natural And Engineering Sciences Second Edition ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Ronald E. Mickens |
Publisher | : World Scientific |
Total Pages | : 544 |
Release | : 2004 |
Genre | : Technology & Engineering |
ISBN | : 9789812387509 |
This book provides a variety of methods required for the analysis and solution of equations which arise in the modeling of phenomena from the natural and engineering sciences. It can be used productively by both undergraduate and graduate students, as well as others who need to learn and understand these techniques. A detailed discussion is also presented for several topics that are usually not included in standard textbooks at this level: qualitative methods for differential equations, dimensionalization and scaling, elements of asymptotics, difference equations, and various perturbation methods. Each chapter contains a large number of worked examples and provides references to the appropriate literature.
Author | : Ronald E Mickens |
Publisher | : World Scientific Publishing Company |
Total Pages | : 640 |
Release | : 2016-12-29 |
Genre | : Mathematics |
ISBN | : 9813202726 |
This second edition provides a broad range of methods and concepts required for the analysis and solution of equations which arise in the modeling of phenomena in the natural, engineering, and applied mathematical sciences. It may be used productively by both undergraduate and graduate students, as well as others who wish to learn, understand, and apply these techniques. Detailed discussions are also given for several topics that are not usually included in standard textbooks at this level of presentation: qualitative methods for differential equations, dimensionalization and scaling, elements of asymptotics, difference equations and several perturbation procedures. Further, this second edition includes several new topics covering functional equations, the Lambert-W function, nonstandard sets of periodic functions, and the method of dominant balance. Each chapter contains a large number of worked examples and provides references to the appropriate books and literature.
Author | : Selcuk S. Bayin |
Publisher | : John Wiley & Sons |
Total Pages | : 710 |
Release | : 2006-09-01 |
Genre | : Mathematics |
ISBN | : 0470047410 |
An innovative treatment of mathematical methods for a multidisciplinary audience Clearly and elegantly presented, Mathematical Methods in Science and Engineering provides a coherent treatment of mathematical methods, bringing advanced mathematical tools to a multidisciplinary audience. The growing interest in interdisciplinary studies has brought scientists from many disciplines such as physics, mathematics, chemistry, biology, economics, and finance together, which has increased the demand for courses in upper-level mathematical techniques. This book succeeds in not only being tuned in to the existing practical needs of this multidisciplinary audience, but also plays a role in the development of new interdisciplinary science by introducing new techniques to students and researchers. Mathematical Methods in Science and Engineering's modular structure affords instructors enough flexibility to use this book for several different advanced undergraduate and graduate level courses. Each chapter serves as a review of its subject and can be read independently, thus it also serves as a valuable reference and refresher for scientists and beginning researchers. There are a growing number of research areas in applied sciences, such as earthquakes, rupture, financial markets, and crashes, that employ the techniques of fractional calculus and path integrals. The book's two unique chapters on these subjects, written in a style that makes these advanced techniques accessible to a multidisciplinary audience, are an indispensable tool for researchers and instructors who want to add something new to their compulsory courses. Mathematical Methods in Science and Engineering includes: * Comprehensive chapters on coordinates and tensors and on continuous groups and their representations * An emphasis on physical motivation and the multidisciplinary nature of the methods discussed * A coherent treatment of carefully selected topics in a style that makes advanced mathematical tools accessible to a multidisciplinary audience * Exercises at the end of every chapter and plentiful examples throughout the book Mathematical Methods in Science and Engineering is not only appropriate as a text for advanced undergraduate and graduate physics programs, but is also appropriate for engineering science and mechanical engineering departments due to its unique chapter coverage and easily accessible style. Readers are expected to be familiar with topics typically covered in the first three years of science and engineering undergraduate programs. Thoroughly class-tested, this book has been used in classes by more than 1,000 students over the past eighteen years.
Author | : Selcuk S. Bayin |
Publisher | : John Wiley & Sons |
Total Pages | : 742 |
Release | : 2018-03-27 |
Genre | : Education |
ISBN | : 1119425395 |
A Practical, Interdisciplinary Guide to Advanced Mathematical Methods for Scientists and Engineers Mathematical Methods in Science and Engineering, Second Edition, provides students and scientists with a detailed mathematical reference for advanced analysis and computational methodologies. Making complex tools accessible, this invaluable resource is designed for both the classroom and the practitioners; the modular format allows flexibility of coverage, while the text itself is formatted to provide essential information without detailed study. Highly practical discussion focuses on the “how-to” aspect of each topic presented, yet provides enough theory to reinforce central processes and mechanisms. Recent growing interest in interdisciplinary studies has brought scientists together from physics, chemistry, biology, economy, and finance to expand advanced mathematical methods beyond theoretical physics. This book is written with this multi-disciplinary group in mind, emphasizing practical solutions for diverse applications and the development of a new interdisciplinary science. Revised and expanded for increased utility, this new Second Edition: Includes over 60 new sections and subsections more useful to a multidisciplinary audience Contains new examples, new figures, new problems, and more fluid arguments Presents a detailed discussion on the most frequently encountered special functions in science and engineering Provides a systematic treatment of special functions in terms of the Sturm-Liouville theory Approaches second-order differential equations of physics and engineering from the factorization perspective Includes extensive discussion of coordinate transformations and tensors, complex analysis, fractional calculus, integral transforms, Green's functions, path integrals, and more Extensively reworked to provide increased utility to a broader audience, this book provides a self-contained three-semester course for curriculum, self-study, or reference. As more scientific disciplines begin to lean more heavily on advanced mathematical analysis, this resource will prove to be an invaluable addition to any bookshelf.
Author | : Ronald E. Mickens |
Publisher | : |
Total Pages | : 640 |
Release | : 2016 |
Genre | : |
ISBN | : 9789813202719 |
Author | : Merle C. Potter |
Publisher | : Springer |
Total Pages | : 444 |
Release | : 2018-05-28 |
Genre | : Technology & Engineering |
ISBN | : 3319916831 |
The purpose of this book is to introduce undergraduate students of engineering and the physical sciences to applied mathematics often essential to the successful solutions of practical problems. The topics selected are a review of Differential Equations, Laplace Transforms, Matrices and Determinants, Vector Analysis, Partial Differential Equations, Complex Variables, and Numerical Methods. The style of presentation is such that the step-by-step derivations may be followed by the reader with minimum assistance. Liberal use of approximately 160 examples and 1000 homework problems serves to aid students in their study. This book presents mathematical topics using derivations (similar to the technique used in engineering textbooks) rather than theorems and proofs typically found in textbooks written by mathematicians. Engineering Analysis is uniquely qualified to help apply mathematics to physical applications (spring-mass systems, electrical circuits, conduction, diffusion, etc.), in a manner as efficient and understandable as possible. This book was written to provide for an additional mathematics course after differential equations, to permit several topics to be introduced in one semester, and to make the material comprehensible to undergraduates.The book comes with an Instructor Solutions Manual, available on request, that provides solutions to all problems and also a Student Solutions Manual that provides solutions to select problems (the answers to which are given at the back of the book).
Author | : Selcuk S. Bayin |
Publisher | : John Wiley & Sons |
Total Pages | : 1105 |
Release | : 2019-12-04 |
Genre | : Mathematics |
ISBN | : 1119580285 |
A comprehensive introduction to the multidisciplinary applications of mathematical methods, revised and updated The second edition of Essentials of Mathematical Methods in Science and Engineering offers an introduction to the key mathematical concepts of advanced calculus, differential equations, complex analysis, and introductory mathematical physics for students in engineering and physics research. The book’s approachable style is designed in a modular format with each chapter covering a subject thoroughly and thus can be read independently. This updated second edition includes two new and extensive chapters that cover practical linear algebra and applications of linear algebra as well as a computer file that includes Matlab codes. To enhance understanding of the material presented, the text contains a collection of exercises at the end of each chapter. The author offers a coherent treatment of the topics with a style that makes the essential mathematical skills easily accessible to a multidisciplinary audience. This important text: • Includes derivations with sufficient detail so that the reader can follow them without searching for results in other parts of the book • Puts the emphasis on the analytic techniques • Contains two new chapters that explore linear algebra and its applications • Includes Matlab codes that the readers can use to practice with the methods introduced in the book Written for students in science and engineering, this new edition of Essentials of Mathematical Methods in Science and Engineering maintains all the successful features of the first edition and includes new information.
Author | : Kenneth Franklin Riley |
Publisher | : |
Total Pages | : 1008 |
Release | : 1997 |
Genre | : |
ISBN | : |
Author | : Andrei D. Polyanin |
Publisher | : CRC Press |
Total Pages | : 1080 |
Release | : 2010-10-18 |
Genre | : Mathematics |
ISBN | : 1439806403 |
A Concise Handbook of Mathematics, Physics, and Engineering Sciences takes a practical approach to the basic notions, formulas, equations, problems, theorems, methods, and laws that most frequently occur in scientific and engineering applications and university education. The authors pay special attention to issues that many engineers and students
Author | : Lev Kantorovich |
Publisher | : Springer |
Total Pages | : 536 |
Release | : 2015-10-08 |
Genre | : Science |
ISBN | : 149392785X |
This book covers a course of mathematics designed primarily for physics and engineering students. It includes all the essential material on mathematical methods, presented in a form accessible to physics students, avoiding precise mathematical jargon and proofs which are comprehensible only to mathematicians. Instead, all proofs are given in a form that is clear and convincing enough for a physicist. Examples, where appropriate, are given from physics contexts. Both solved and unsolved problems are provided in each section of the book. Mathematics for Natural Scientists: Fundamentals and Basics is the first of two volumes. Advanced topics and their applications in physics are covered in the second volume.