Mathematical Constants Ii
Download Mathematical Constants Ii full books in PDF, epub, and Kindle. Read online free Mathematical Constants Ii ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Steven R. Finch |
Publisher | : Cambridge University Press |
Total Pages | : 634 |
Release | : 2003-08-18 |
Genre | : Mathematics |
ISBN | : 9780521818056 |
Steven Finch provides 136 essays, each devoted to a mathematical constant or a class of constants, from the well known to the highly exotic. This book is helpful both to readers seeking information about a specific constant, and to readers who desire a panoramic view of all constants coming from a particular field, for example, combinatorial enumeration or geometric optimization. Unsolved problems appear virtually everywhere as well. This work represents an outstanding scholarly attempt to bring together all significant mathematical constants in one place.
Author | : Steven R. Finch |
Publisher | : Cambridge University Press |
Total Pages | : 783 |
Release | : 2018-12-06 |
Genre | : Mathematics |
ISBN | : 110860403X |
Famous mathematical constants include the ratio of circular circumference to diameter, π = 3.14 ..., and the natural logarithm base, e = 2.718 .... Students and professionals can often name a few others, but there are many more buried in the literature and awaiting discovery. How do such constants arise, and why are they important? Here the author renews the search he began in his book Mathematical Constants, adding another 133 essays that broaden the landscape. Topics include the minimality of soap film surfaces, prime numbers, elliptic curves and modular forms, Poisson–Voronoi tessellations, random triangles, Brownian motion, uncertainty inequalities, Prandtl–Blasius flow (from fluid dynamics), Lyapunov exponents, knots and tangles, continued fractions, Galton–Watson trees, electrical capacitance (from potential theory), Zermelo's navigation problem, and the optimal control of a pendulum. Unsolved problems appear virtually everywhere as well. This volume continues an outstanding scholarly attempt to bring together all significant mathematical constants in one place.
Author | : Various |
Publisher | : DigiCat |
Total Pages | : 166 |
Release | : 2022-11-21 |
Genre | : Fiction |
ISBN | : |
"Miscellaneous Mathematical Constants" is a collection of mathematical constants. The constants include The Backhouse constant, The Berstein Constant, The Catalan Constant, The Champernowne, Constant Copeland-Erdos constant cos (1) to 15000 digits among others as compiled and presented by the famed mathematician Simon Plouffe. Simon Plouffe is a mathematician who discovered the Bailey–Borwein–Plouffe formula (BBP algorithm) which permits the computation of the nth binary digit of π, in 1995.
Author | : William Dunham |
Publisher | : Princeton University Press |
Total Pages | : 256 |
Release | : 2018-11-13 |
Genre | : Mathematics |
ISBN | : 069118285X |
More than three centuries after its creation, calculus remains a dazzling intellectual achievement and the gateway to higher mathematics. This book charts its growth and development by sampling from the work of some of its foremost practitioners, beginning with Isaac Newton and Gottfried Wilhelm Leibniz in the late seventeenth century and continuing to Henri Lebesgue at the dawn of the twentieth. Now with a new preface by the author, this book documents the evolution of calculus from a powerful but logically chaotic subject into one whose foundations are thorough, rigorous, and unflinching—a story of genius triumphing over some of the toughest, subtlest problems imaginable. In touring The Calculus Gallery, we can see how it all came to be.
Author | : Steven R. Finch |
Publisher | : Cambridge University Press |
Total Pages | : 783 |
Release | : 2003 |
Genre | : Mathematics |
ISBN | : 1108470599 |
Famous mathematical constants include the ratio of circular circumference to diameter, π = 3.14 ..., and the natural logarithm base, e = 2.718 .... Students and professionals can often name a few others, but there are many more buried in the literature and awaiting discovery. How do such constants arise, and why are they important? Here the author renews the search he began in his book Mathematical Constants, adding another 133 essays that broaden the landscape. Topics include the minimality of soap film surfaces, prime numbers, elliptic curves and modular forms, Poisson-Voronoi tessellations, random triangles, Brownian motion, uncertainty inequalities, Prandtl-Blasius flow (from fluid dynamics), Lyapunov exponents, knots and tangles, continued fractions, Galton-Watson trees, electrical capacitance (from potential theory), Zermelo's navigation problem, and the optimal control of a pendulum. Unsolved problems appear virtually everywhere as well. This volume continues an outstanding scholarly attempt to bring together all significant mathematical constants in one place.
Author | : John Barrow |
Publisher | : Vintage |
Total Pages | : 370 |
Release | : 2009-05-06 |
Genre | : Science |
ISBN | : 0307555356 |
Reality as we know it is bound by a set of constants—numbers and values that dictate the strengths of forces like gravity, the speed of light, and the masses of elementary particles. In The Constants of Nature, Cambridge Professor and bestselling author John D.Barrow takes us on an exploration of these governing principles. Drawing on physicists such as Einstein and Planck, Barrow illustrates with stunning clarity our dependence on the steadfastness of these principles. But he also suggests that the basic forces may have been radically different during the universe’s infancy, and suggests that they may continue a deeply hidden evolution. Perhaps most tantalizingly, Barrow theorizes about the realities that might one day be found in a universe with different parameters than our own.
Author | : Max Tegmark |
Publisher | : Vintage |
Total Pages | : 434 |
Release | : 2015-02-03 |
Genre | : Science |
ISBN | : 0307744256 |
Max Tegmark leads us on an astonishing journey through past, present and future, and through the physics, astronomy and mathematics that are the foundation of his work, most particularly his hypothesis that our physical reality is a mathematical structure and his theory of the ultimate multiverse. In a dazzling combination of both popular and groundbreaking science, he not only helps us grasp his often mind-boggling theories, but he also shares with us some of the often surprising triumphs and disappointments that have shaped his life as a scientist. Fascinating from first to last—this is a book that has already prompted the attention and admiration of some of the most prominent scientists and mathematicians.
Author | : Jonathan Borwein |
Publisher | : CRC Press |
Total Pages | : 393 |
Release | : 2008-10-27 |
Genre | : Mathematics |
ISBN | : 1439865361 |
This revised and updated second edition maintains the content and spirit of the first edition and includes a new chapter, "Recent Experiences", that provides examples of experimental mathematics that have come to light since the publication of the first edition in 2003. For more examples and insights, Experimentation in Mathematics: Computational P
Author | : John Stillwell |
Publisher | : Springer Nature |
Total Pages | : 400 |
Release | : 2020-11-07 |
Genre | : Mathematics |
ISBN | : 3030551938 |
This textbook provides a unified and concise exploration of undergraduate mathematics by approaching the subject through its history. Readers will discover the rich tapestry of ideas behind familiar topics from the undergraduate curriculum, such as calculus, algebra, topology, and more. Featuring historical episodes ranging from the Ancient Greeks to Fermat and Descartes, this volume offers a glimpse into the broader context in which these ideas developed, revealing unexpected connections that make this ideal for a senior capstone course. The presentation of previous versions has been refined by omitting the less mainstream topics and inserting new connecting material, allowing instructors to cover the book in a one-semester course. This condensed edition prioritizes succinctness and cohesiveness, and there is a greater emphasis on visual clarity, featuring full color images and high quality 3D models. As in previous editions, a wide array of mathematical topics are covered, from geometry to computation; however, biographical sketches have been omitted. Mathematics and Its History: A Concise Edition is an essential resource for courses or reading programs on the history of mathematics. Knowledge of basic calculus, algebra, geometry, topology, and set theory is assumed. From reviews of previous editions: “Mathematics and Its History is a joy to read. The writing is clear, concise and inviting. The style is very different from a traditional text. I found myself picking it up to read at the expense of my usual late evening thriller or detective novel.... The author has done a wonderful job of tying together the dominant themes of undergraduate mathematics.” Richard J. Wilders, MAA, on the Third Edition "The book...is presented in a lively style without unnecessary detail. It is very stimulating and will be appreciated not only by students. Much attention is paid to problems and to the development of mathematics before the end of the nineteenth century.... This book brings to the non-specialist interested in mathematics many interesting results. It can be recommended for seminars and will be enjoyed by the broad mathematical community." European Mathematical Society, on the Second Edition
Author | : Edward R. Scheinerman |
Publisher | : Yale University Press |
Total Pages | : 295 |
Release | : 2017-01-01 |
Genre | : Mathematics |
ISBN | : 0300223005 |
Twenty-three mathematical masterpieces for exploration and enlightenment How can a shape have more than one dimension but fewer than two? What is the best way to elect public officials when more than two candidates are vying for the office? Is it possible for a highly accurate medical test to give mostly incorrect results? Can you tile your floor with regular pentagons? How can you use only the first digit of sales numbers to determine if your accountant is lying? Can mathematics give insights into free will? Edward Scheinerman, an accomplished mathematician and enthusiastic educator, answers all these questions and more in this book, a collection of mathematical masterworks. In bite-sized chapters that require only high school algebra, he invites readers to try their hands at solving mathematical puzzles and provides an engaging and friendly tour of numbers, shapes, and uncertainty. The result is an unforgettable introduction to the fundamentals and pleasures of thinking mathematically.