The Mathematical Theory of Finite Element Methods

The Mathematical Theory of Finite Element Methods
Author: Susanne Brenner
Publisher: Springer Science & Business Media
Total Pages: 369
Release: 2013-03-14
Genre: Mathematics
ISBN: 1475736584

A rigorous and thorough mathematical introduction to the subject; A clear and concise treatment of modern fast solution techniques such as multigrid and domain decomposition algorithms; Second edition contains two new chapters, as well as many new exercises; Previous edition sold over 3000 copies worldwide

An Introduction to the Mathematical Theory of Finite Elements

An Introduction to the Mathematical Theory of Finite Elements
Author: J. T. Oden
Publisher: Courier Corporation
Total Pages: 450
Release: 2012-05-23
Genre: Technology & Engineering
ISBN: 0486142213

This introduction to the theory of Sobolev spaces and Hilbert space methods in partial differential equations is geared toward readers of modest mathematical backgrounds. It offers coherent, accessible demonstrations of the use of these techniques in developing the foundations of the theory of finite element approximations. J. T. Oden is Director of the Institute for Computational Engineering & Sciences (ICES) at the University of Texas at Austin, and J. N. Reddy is a Professor of Engineering at Texas A&M University. They developed this essentially self-contained text from their seminars and courses for students with diverse educational backgrounds. Their effective presentation begins with introductory accounts of the theory of distributions, Sobolev spaces, intermediate spaces and duality, the theory of elliptic equations, and variational boundary value problems. The second half of the text explores the theory of finite element interpolation, finite element methods for elliptic equations, and finite element methods for initial boundary value problems. Detailed proofs of the major theorems appear throughout the text, in addition to numerous examples.

The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations

The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations
Author: A. K. Aziz
Publisher: Academic Press
Total Pages: 814
Release: 2014-05-10
Genre: Technology & Engineering
ISBN: 1483267989

The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations is a collection of papers presented at the 1972 Symposium by the same title, held at the University of Maryland, Baltimore County Campus. This symposium relates considerable numerical analysis involved in research in both theoretical and practical aspects of the finite element method. This text is organized into three parts encompassing 34 chapters. Part I focuses on the mathematical foundations of the finite element method, including papers on theory of approximation, variational principles, the problems of perturbations, and the eigenvalue problem. Part II covers a large number of important results of both a theoretical and a practical nature. This part discusses the piecewise analytic interpolation and approximation of triangulated polygons; the Patch test for convergence of finite elements; solutions for Dirichlet problems; variational crimes in the field; and superconvergence result for the approximate solution of the heat equation by a collocation method. Part III explores the many practical aspects of finite element method. This book will be of great value to mathematicians, engineers, and physicists.

The Finite Element Method for Elliptic Problems

The Finite Element Method for Elliptic Problems
Author: P.G. Ciarlet
Publisher: Elsevier
Total Pages: 551
Release: 1978-01-01
Genre: Mathematics
ISBN: 0080875254

The objective of this book is to analyze within reasonable limits (it is not a treatise) the basic mathematical aspects of the finite element method. The book should also serve as an introduction to current research on this subject. On the one hand, it is also intended to be a working textbook for advanced courses in Numerical Analysis, as typically taught in graduate courses in American and French universities. For example, it is the author's experience that a one-semester course (on a three-hour per week basis) can be taught from Chapters 1, 2 and 3 (with the exception of Section 3.3), while another one-semester course can be taught from Chapters 4 and 6. On the other hand, it is hoped that this book will prove to be useful for researchers interested in advanced aspects of the numerical analysis of the finite element method. In this respect, Section 3.3, Chapters 5, 7 and 8, and the sections on "Additional Bibliography and Comments should provide many suggestions for conducting seminars.

Theory and Practice of Finite Elements

Theory and Practice of Finite Elements
Author: Alexandre Ern
Publisher: Springer Science & Business Media
Total Pages: 531
Release: 2013-03-09
Genre: Mathematics
ISBN: 1475743556

This text presenting the mathematical theory of finite elements is organized into three main sections. The first part develops the theoretical basis for the finite element methods, emphasizing inf-sup conditions over the more conventional Lax-Milgrim paradigm. The second and third parts address various applications and practical implementations of the method, respectively. It contains numerous examples and exercises.

Theoretical Numerical Analysis

Theoretical Numerical Analysis
Author: Kendall Atkinson
Publisher: Springer Science & Business Media
Total Pages: 472
Release: 2001-03-09
Genre: Mathematics
ISBN: 0387951423

This book gives an introduction to functional analysis in a way that is tailored to fit the needs of the researcher or student. The book explains the basic results of functional analysis as well as relevant topics in numerical analysis. Applications of functional analysis are given by considering numerical methods for solving partial differential equations and integral equations. The material is especially useful for researchers and students who wish to work in theoretical numerical analysis and seek a background in the "tools of the trade" covered in this book.

Mathematical Aspects of Discontinuous Galerkin Methods

Mathematical Aspects of Discontinuous Galerkin Methods
Author: Daniele Antonio Di Pietro
Publisher: Springer Science & Business Media
Total Pages: 392
Release: 2011-11-03
Genre: Mathematics
ISBN: 3642229808

This book introduces the basic ideas to build discontinuous Galerkin methods and, at the same time, incorporates several recent mathematical developments. The presentation is to a large extent self-contained and is intended for graduate students and researchers in numerical analysis. The material covers a wide range of model problems, both steady and unsteady, elaborating from advection-reaction and diffusion problems up to the Navier-Stokes equations and Friedrichs' systems. Both finite element and finite volume viewpoints are exploited to convey the main ideas underlying the design of the approximation. The analysis is presented in a rigorous mathematical setting where discrete counterparts of the key properties of the continuous problem are identified. The framework encompasses fairly general meshes regarding element shapes and hanging nodes. Salient implementation issues are also addressed.

Finite Elements for Analysis and Design

Finite Elements for Analysis and Design
Author: J. E. Akin
Publisher: Elsevier
Total Pages: 563
Release: 2014-06-28
Genre: Technology & Engineering
ISBN: 008050647X

The finite element method (FEM) is an analysis tool for problem-solving used throughout applied mathematics, engineering, and scientific computing. Finite Elements for Analysis and Design provides a thoroughlyrevised and up-to-date account of this important tool and its numerous applications, with added emphasis on basic theory. Numerous worked examples are included to illustrate the material. - Akin clearly explains the FEM, a numerical analysis tool for problem-solving throughout applied mathematics, engineering and scientific computing - Basic theory has been added in the book, including worked examples to enable students to understand the concepts - Contains coverage of computational topics, including worked examples to enable students to understand concepts - Improved coverage of sensitivity analysis and computational fluid dynamics - Uses example applications to increase students' understanding - Includes a disk with the FORTRAN source for the programs cided in the text

The Finite Element Method for Boundary Value Problems

The Finite Element Method for Boundary Value Problems
Author: Karan S. Surana
Publisher: CRC Press
Total Pages: 824
Release: 2016-11-17
Genre: Science
ISBN: 1498780512

Written by two well-respected experts in the field, The Finite Element Method for Boundary Value Problems: Mathematics and Computations bridges the gap between applied mathematics and application-oriented computational studies using FEM. Mathematically rigorous, the FEM is presented as a method of approximation for differential operators that are mathematically classified as self-adjoint, non-self-adjoint, and non-linear, thus addressing totality of all BVPs in various areas of engineering, applied mathematics, and physical sciences. These classes of operators are utilized in various methods of approximation: Galerkin method, Petrov-Galerkin Method, weighted residual method, Galerkin method with weak form, least squares method based on residual functional, etc. to establish unconditionally stable finite element computational processes using calculus of variations. Readers are able to grasp the mathematical foundation of finite element method as well as its versatility of applications. h-, p-, and k-versions of finite element method, hierarchical approximations, convergence, error estimation, error computation, and adaptivity are additional significant aspects of this book.

The Finite Element Method: Theory, Implementation, and Applications

The Finite Element Method: Theory, Implementation, and Applications
Author: Mats G. Larson
Publisher: Springer Science & Business Media
Total Pages: 403
Release: 2013-01-13
Genre: Computers
ISBN: 3642332870

This book gives an introduction to the finite element method as a general computational method for solving partial differential equations approximately. Our approach is mathematical in nature with a strong focus on the underlying mathematical principles, such as approximation properties of piecewise polynomial spaces, and variational formulations of partial differential equations, but with a minimum level of advanced mathematical machinery from functional analysis and partial differential equations. In principle, the material should be accessible to students with only knowledge of calculus of several variables, basic partial differential equations, and linear algebra, as the necessary concepts from more advanced analysis are introduced when needed. Throughout the text we emphasize implementation of the involved algorithms, and have therefore mixed mathematical theory with concrete computer code using the numerical software MATLAB is and its PDE-Toolbox. We have also had the ambition to cover some of the most important applications of finite elements and the basic finite element methods developed for those applications, including diffusion and transport phenomena, solid and fluid mechanics, and also electromagnetics.​