Mathematical And Statistical Methods For Genetic Analysis 2e
Download Mathematical And Statistical Methods For Genetic Analysis 2e full books in PDF, epub, and Kindle. Read online free Mathematical And Statistical Methods For Genetic Analysis 2e ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Kenneth Lange |
Publisher | : Springer Science & Business Media |
Total Pages | : 376 |
Release | : 2012-12-06 |
Genre | : Medical |
ISBN | : 0387217509 |
Written to equip students in the mathematical siences to understand and model the epidemiological and experimental data encountered in genetics research. This second edition expands the original edition by over 100 pages and includes new material. Sprinkled throughout the chapters are many new problems.
Author | : Lange |
Publisher | : |
Total Pages | : 386 |
Release | : 2004-01-01 |
Genre | : |
ISBN | : 9788181281135 |
Author | : Andreas Ziegler |
Publisher | : John Wiley & Sons |
Total Pages | : 522 |
Release | : 2011-08-24 |
Genre | : Science |
ISBN | : 3527633669 |
A Statistical Approach to Genetic Epidemiology After studying statistics and mathematics at the University of Munich and obtaining his doctoral degree from the University of Dortmund, Andreas Ziegler received the Johann-Peter-Süssmilch-Medal of the German Association for Medical Informatics, Biometry and Epidemiology for his post-doctoral work on “Model Free Linkage Analysis of Quantitative Traits” in 1999. In 2004, he was one of the recipients of the Fritz-Linder-Forum-Award from the German Association for Surgery.
Author | : Warren J. Ewens |
Publisher | : Springer Science & Business Media |
Total Pages | : 616 |
Release | : 2005-09-30 |
Genre | : Science |
ISBN | : 0387400826 |
Advances in computers and biotechnology have had a profound impact on biomedical research, and as a result complex data sets can now be generated to address extremely complex biological questions. Correspondingly, advances in the statistical methods necessary to analyze such data are following closely behind the advances in data generation methods. The statistical methods required by bioinformatics present many new and difficult problems for the research community. This book provides an introduction to some of these new methods. The main biological topics treated include sequence analysis, BLAST, microarray analysis, gene finding, and the analysis of evolutionary processes. The main statistical techniques covered include hypothesis testing and estimation, Poisson processes, Markov models and Hidden Markov models, and multiple testing methods. The second edition features new chapters on microarray analysis and on statistical inference, including a discussion of ANOVA, and discussions of the statistical theory of motifs and methods based on the hypergeometric distribution. Much material has been clarified and reorganized. The book is written so as to appeal to biologists and computer scientists who wish to know more about the statistical methods of the field, as well as to trained statisticians who wish to become involved with bioinformatics. The earlier chapters introduce the concepts of probability and statistics at an elementary level, but with an emphasis on material relevant to later chapters and often not covered in standard introductory texts. Later chapters should be immediately accessible to the trained statistician. Sufficient mathematical background consists of introductory courses in calculus and linear algebra. The basic biological concepts that are used are explained, or can be understood from the context, and standard mathematical concepts are summarized in an Appendix. Problems are provided at the end of each chapter allowing the reader to develop aspects of the theory outlined in the main text. Warren J. Ewens holds the Christopher H. Brown Distinguished Professorship at the University of Pennsylvania. He is the author of two books, Population Genetics and Mathematical Population Genetics. He is a senior editor of Annals of Human Genetics and has served on the editorial boards of Theoretical Population Biology, GENETICS, Proceedings of the Royal Society B and SIAM Journal in Mathematical Biology. He is a fellow of the Royal Society and the Australian Academy of Science. Gregory R. Grant is a senior bioinformatics researcher in the University of Pennsylvania Computational Biology and Informatics Laboratory. He obtained his Ph.D. in number theory from the University of Maryland in 1995 and his Masters in Computer Science from the University of Pennsylvania in 1999. Comments on the first edition: "This book would be an ideal text for a postgraduate course...[and] is equally well suited to individual study.... I would recommend the book highly." (Biometrics) "Ewens and Grant have given us a very welcome introduction to what is behind those pretty [graphical user] interfaces." (Naturwissenschaften) "The authors do an excellent job of presenting the essence of the material without getting bogged down in mathematical details." (Journal American Statistical Association) "The authors have restructured classical material to a great extent and the new organization of the different topics is one of the outstanding services of the book." (Metrika)
Author | : David J. Balding |
Publisher | : John Wiley & Sons |
Total Pages | : 1616 |
Release | : 2008-06-10 |
Genre | : Science |
ISBN | : 9780470997628 |
The Handbook for Statistical Genetics is widely regarded as the reference work in the field. However, the field has developed considerably over the past three years. In particular the modeling of genetic networks has advanced considerably via the evolution of microarray analysis. As a consequence the 3rd edition of the handbook contains a much expanded section on Network Modeling, including 5 new chapters covering metabolic networks, graphical modeling and inference and simulation of pedigrees and genealogies. Other chapters new to the 3rd edition include Human Population Genetics, Genome-wide Association Studies, Family-based Association Studies, Pharmacogenetics, Epigenetics, Ethic and Insurance. As with the second Edition, the Handbook includes a glossary of terms, acronyms and abbreviations, and features extensive cross-referencing between the chapters, tying the different areas together. With heavy use of up-to-date examples, real-life case studies and references to web-based resources, this continues to be must-have reference in a vital area of research. Edited by the leading international authorities in the field. David Balding - Department of Epidemiology & Public Health, Imperial College An advisor for our Probability & Statistics series, Professor Balding is also a previous Wiley author, having written Weight-of-Evidence for Forensic DNA Profiles, as well as having edited the two previous editions of HSG. With over 20 years teaching experience, he’s also had dozens of articles published in numerous international journals. Martin Bishop – Head of the Bioinformatics Division at the HGMP Resource Centre As well as the first two editions of HSG, Dr Bishop has edited a number of introductory books on the application of informatics to molecular biology and genetics. He is the Associate Editor of the journal Bioinformatics and Managing Editor of Briefings in Bioinformatics. Chris Cannings – Division of Genomic Medicine, University of Sheffield With over 40 years teaching in the area, Professor Cannings has published over 100 papers and is on the editorial board of many related journals. Co-editor of the two previous editions of HSG, he also authored a book on this topic.
Author | : Susan R. Wilson |
Publisher | : EOLSS Publications |
Total Pages | : 466 |
Release | : 2009-02-18 |
Genre | : Mathematics |
ISBN | : 1905839375 |
Biometrics is a component of Encyclopedia of Mathematical Sciences in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. Biometry is a broad discipline covering all applications of statistics and mathematics to biology. The Theme Biometrics is divided into areas of expertise essential for a proper application of statistical and mathematical methods to contemporary biological problems. These volumes cover four main topics: Data Collection and Analysis, Statistical Methodology, Computation, Biostatistical Methods and Research Design and Selected Topics. These volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs.
Author | : M.C. Yang |
Publisher | : CRC Press |
Total Pages | : 264 |
Release | : 2000-02-23 |
Genre | : Mathematics |
ISBN | : 9789056991340 |
Although the basic statistical theory behind modern genetics is not very difficult, most statistical genetics papers are not easy to read for beginners in the field, and formulae quickly become very tedious to fit a particular area of application. Introduction to Statistical Methods in Modern Genetics distinguishes between the necessary and unnecessary complexity in a presentation designed for graduate-level statistics students. The author keeps derivations simple, but does so without losing the mathematical details. He also provides the required background in modern genetics for those looking forward to entering this arena. Along with some of the statistical tools important in genetics applications, students will learn: How a gene is found How scientists have separated the genetic and environmental aspects of a person's intelligence How genetics are used in agriculture to improve crops and domestic animals What a DNA fingerprint is and why there are controversies about it Although the author assumes students have a foundation in basic statistics, an appendix provides the necessary background beyond the elementary, including multinomial distributions, inference on frequency tables, and discriminant analysis. With clear explanations, a multitude of figures, and exercise sets in each chapter, this text forms an outstanding entrée into the rapidly expanding world of genetic data analysis.
Author | : Benjamin Neale |
Publisher | : Garland Science |
Total Pages | : 608 |
Release | : 2007-11-30 |
Genre | : Science |
ISBN | : 1134129335 |
Statistical Genetics is an advanced textbook focusing on conducting genome-wide linkage and association analysis in order to identify the genes responsible for complex behaviors and diseases. Starting with an introductory section on statistics and quantitative genetics, it covers both established and new methodologies, providing the genetic and statistical theory on which they are based. Each chapter is written by leading researchers, who give the reader the benefit of their experience with worked examples, study design, and sources of error. The text can be used in conjunction with an associated website (www.genemapping.org) that provides supplementary material and links to downloadable software.
Author | : Yogendra P Chaubey |
Publisher | : World Scientific |
Total Pages | : 276 |
Release | : 2013-03-14 |
Genre | : Mathematics |
ISBN | : 9814417998 |
This volume consists of a series of research papers presented at the conference Statistics 2011 Canada: 5th Canadian Conference in Applied Statistics held together with the 20th conference of the Forum for Interdisciplinary Mathematics titled, “Interdisciplinary Mathematical & Statistical Techniques”. These papers cover a wide range of topics from applications of Mathematics and Statistics such as Selection Bias in Surveys, Biomarker Discovery, Analysis of Earth Temperature, Supply Chain Management, Trimmed ANOVA, Zero-inflated Data, Non-Gaussian Time Series, and Stochastic Ordering; Classification, Nonparametric Test, and Jackknifed Ridge Estimator; Bayes Factor; Random Graphs and Error Correcting Codes; Meta Analysis; and National Health Plans and Risk Reduction through Supply Chain.The topics have been reviewed by experts in the field and the selected papers are expected to provide a topical resource on the subjects concerned.
Author | : David Siegmund |
Publisher | : Springer Science & Business Media |
Total Pages | : 337 |
Release | : 2007-05-27 |
Genre | : Medical |
ISBN | : 0387496866 |
This book details the statistical concepts used in gene mapping, first in the experimental context of crosses of inbred lines and then in outbred populations, primarily humans. It presents elementary principles of probability and statistics, which are implemented by computational tools based on the R programming language to simulate genetic experiments and evaluate statistical analyses. Each chapter contains exercises, both theoretical and computational, some routine and others that are more challenging. The R programming language is developed in the text.