Mathematical Analysis of Thin Plate Models

Mathematical Analysis of Thin Plate Models
Author: Philippe Destuynder
Publisher: Springer Science & Business Media
Total Pages: 247
Release: 2013-11-11
Genre: Mathematics
ISBN: 3642517617

Shells and plates have been widely studied by engineers during the last fifty years. As a matter of fact an important number of papers have been based on analytical calculations. More recently numerical simulations have been extensively used. for instance for large displacement analysis. for shape optimization or even -in linear analysis -for composite material understanding. But all these works lie on a choice of a finite element scheme which contains usually three kinds of approximations: 1. a plate or shell mndel including smnll parameters associated to the thickness, 2. an approximntion of the geometry (the medium sUrface of a shell and its boundary), 3. afinite element scheme in order to solve the mndel chosen. VI Obviously the conclusions that we can draw are very much depending on the quality of the three previous choices. For instance composite laminated plates with damage like a delamination is still an open problem even if interesting papers have already been published and based on numerical simulation using existing fmite element and even plate models. • In our opinion the understanding of plate modelling is still an area of interest. Furthermore the links between the various models have to be handled with care. The certainly best understood model is the Kirchhoff-Love model which was completely justified by P. O. Ciarlet and Ph. Destuynder in linear analysis using asymptotic method. But the conclusion is not so clear as far as large displacements are to be taken into account.

Mathematical Analysis of Thin Plate Models

Mathematical Analysis of Thin Plate Models
Author: Philippe Destuynder
Publisher: Springer Science & Business Media
Total Pages: 254
Release: 1996-07-26
Genre: Computers
ISBN:

This book is written for teachers, researchers and students who wish to learn about different thin plate models and to master the underlying mathematical approximation problems. It contains mainly new results and original applications for the research of delamination of multilayered structures.

Thin Plates and Shells

Thin Plates and Shells
Author: Eduard Ventsel
Publisher: CRC Press
Total Pages: 688
Release: 2001-08-24
Genre: Mathematics
ISBN: 9780203908723

Presenting recent principles of thin plate and shell theories, this book emphasizes novel analytical and numerical methods for solving linear and nonlinear plate and shell dilemmas, new theories for the design and analysis of thin plate-shell structures, and real-world numerical solutions, mechanics, and plate and shell models for engineering appli

The Boundary Element Method for Plate Analysis

The Boundary Element Method for Plate Analysis
Author: John T. Katsikadelis
Publisher: Elsevier
Total Pages: 345
Release: 2014-07-16
Genre: Mathematics
ISBN: 0124167446

Boundary Element Method for Plate Analysis offers one of the first systematic and detailed treatments of the application of BEM to plate analysis and design. Aiming to fill in the knowledge gaps left by contributed volumes on the topic and increase the accessibility of the extensive journal literature covering BEM applied to plates, author John T. Katsikadelis draws heavily on his pioneering work in the field to provide a complete introduction to theory and application. Beginning with a chapter of preliminary mathematical background to make the book a self-contained resource, Katsikadelis moves on to cover the application of BEM to basic thin plate problems and more advanced problems. Each chapter contains several examples described in detail and closes with problems to solve. Presenting the BEM as an efficient computational method for practical plate analysis and design, Boundary Element Method for Plate Analysis is a valuable reference for researchers, students and engineers working with BEM and plate challenges within mechanical, civil, aerospace and marine engineering. - One of the first resources dedicated to boundary element analysis of plates, offering a systematic and accessible introductory to theory and application - Authored by a leading figure in the field whose pioneering work has led to the development of BEM as an efficient computational method for practical plate analysis and design - Includes mathematical background, examples and problems in one self-contained resource

Issues in Mathematical Theory and Modeling: 2013 Edition

Issues in Mathematical Theory and Modeling: 2013 Edition
Author:
Publisher: ScholarlyEditions
Total Pages: 403
Release: 2013-05-01
Genre: Mathematics
ISBN: 1490110151

Issues in Mathematical Theory and Modeling / 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about Lie Theory. The editors have built Issues in Mathematical Theory and Modeling: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Lie Theory in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Mathematical Theory and Modeling: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

Applied Mathematical Analysis: Theory, Methods, and Applications

Applied Mathematical Analysis: Theory, Methods, and Applications
Author: Hemen Dutta
Publisher: Springer
Total Pages: 809
Release: 2019-02-21
Genre: Technology & Engineering
ISBN: 3319999184

This book addresses key aspects of recent developments in applied mathematical analysis and its use. It also highlights a broad range of applications from science, engineering, technology and social perspectives. Each chapter investigates selected research problems and presents a balanced mix of theory, methods and applications for the chosen topics. Special emphasis is placed on presenting basic developments in applied mathematical analysis, and on highlighting the latest advances in this research area. The book is presented in a self-contained manner as far as possible, and includes sufficient references to allow the interested reader to pursue further research in this still-developing field. The primary audience for this book includes graduate students, researchers and educators; however, it will also be useful for general readers with an interest in recent developments in applied mathematical analysis and applications.

Mathematical Analysis of Continuum Mechanics and Industrial Applications III

Mathematical Analysis of Continuum Mechanics and Industrial Applications III
Author: Hiromichi Itou
Publisher: Springer Nature
Total Pages: 199
Release: 2020-08-29
Genre: Science
ISBN: 9811560625

This book focuses on mathematical theory and numerical simulation related to various areas of continuum mechanics, such as fracture mechanics, (visco)elasticity, optimal shape design, modelling of earthquakes and Tsunami waves, material structure, interface dynamics and complex systems. Written by leading researchers from the fields of applied mathematics, physics, seismology, engineering, and industry with an extensive knowledge of mathematical analysis, it helps readers understand how mathematical theory can be applied to various phenomena, and conversely, how to formulate actual phenomena as mathematical problems. This book is the sequel to the proceedings of the International Conference of Continuum Mechanics Focusing on Singularities (CoMFoS) 15 and CoMFoS16.

Mathematical Modelling and Numerical Analysis of Size-Dependent Structural Members in Temperature Fields

Mathematical Modelling and Numerical Analysis of Size-Dependent Structural Members in Temperature Fields
Author: Jan Awrejcewicz
Publisher: Springer Nature
Total Pages: 419
Release: 2020-10-08
Genre: Technology & Engineering
ISBN: 3030559939

This book is devoted to researchers and teachers, as well as graduate students, undergraduates and bachelors in engineering mechanics, nano-mechanics, nanomaterials, nanostructures and applied mathematics. It presents a collection of the latest developments in the field of nonlinear (chaotic) dynamics of mass distributed-parameter nanomechanical structures, providing a rigorous and comprehensive study of modeling nonlinear phenomena. It is written in a unique pedagogical style particularly suitable for independent study and self-education. In addition, the book achieves a good balance between Western and Eastern extensive studies of the mathematical problems of nonlinear vibrations of structural members.

Duality Principles in Nonconvex Systems

Duality Principles in Nonconvex Systems
Author: David Yang Gao
Publisher: Springer Science & Business Media
Total Pages: 463
Release: 2013-03-09
Genre: Mathematics
ISBN: 1475731760

Motivated by practical problems in engineering and physics, drawing on a wide range of applied mathematical disciplines, this book is the first to provide, within a unified framework, a self-contained comprehensive mathematical theory of duality for general non-convex, non-smooth systems, with emphasis on methods and applications in engineering mechanics. Topics covered include the classical (minimax) mono-duality of convex static equilibria, the beautiful bi-duality in dynamical systems, the interesting tri-duality in non-convex problems and the complicated multi-duality in general canonical systems. A potentially powerful sequential canonical dual transformation method for solving fully nonlinear problems is developed heuristically and illustrated by use of many interesting examples as well as extensive applications in a wide variety of nonlinear systems, including differential equations, variational problems and inequalities, constrained global optimization, multi-well phase transitions, non-smooth post-bifurcation, large deformation mechanics, structural limit analysis, differential geometry and non-convex dynamical systems. With exceptionally coherent and lucid exposition, the work fills a big gap between the mathematical and engineering sciences. It shows how to use formal language and duality methods to model natural phenomena, to construct intrinsic frameworks in different fields and to provide ideas, concepts and powerful methods for solving non-convex, non-smooth problems arising naturally in engineering and science. Much of the book contains material that is new, both in its manner of presentation and in its research development. A self-contained appendix provides some necessary background from elementary functional analysis. Audience: The book will be a valuable resource for students and researchers in applied mathematics, physics, mechanics and engineering. The whole volume or selected chapters can also be recommended as a text for both senior undergraduate and graduate courses in applied mathematics, mechanics, general engineering science and other areas in which the notions of optimization and variational methods are employed.