Mastering Machine Learning on AWS

Mastering Machine Learning on AWS
Author: Dr. Saket S.R. Mengle
Publisher: Packt Publishing Ltd
Total Pages: 293
Release: 2019-05-20
Genre: Computers
ISBN: 1789347505

Gain expertise in ML techniques with AWS to create interactive apps using SageMaker, Apache Spark, and TensorFlow. Key FeaturesBuild machine learning apps on Amazon Web Services (AWS) using SageMaker, Apache Spark and TensorFlowLearn model optimization, and understand how to scale your models using simple and secure APIsDevelop, train, tune and deploy neural network models to accelerate model performance in the cloudBook Description AWS is constantly driving new innovations that empower data scientists to explore a variety of machine learning (ML) cloud services. This book is your comprehensive reference for learning and implementing advanced ML algorithms in AWS cloud. As you go through the chapters, you’ll gain insights into how these algorithms can be trained, tuned and deployed in AWS using Apache Spark on Elastic Map Reduce (EMR), SageMaker, and TensorFlow. While you focus on algorithms such as XGBoost, linear models, factorization machines, and deep nets, the book will also provide you with an overview of AWS as well as detailed practical applications that will help you solve real-world problems. Every practical application includes a series of companion notebooks with all the necessary code to run on AWS. In the next few chapters, you will learn to use SageMaker and EMR Notebooks to perform a range of tasks, right from smart analytics, and predictive modeling, through to sentiment analysis. By the end of this book, you will be equipped with the skills you need to effectively handle machine learning projects and implement and evaluate algorithms on AWS. What you will learnManage AI workflows by using AWS cloud to deploy services that feed smart data productsUse SageMaker services to create recommendation modelsScale model training and deployment using Apache Spark on EMRUnderstand how to cluster big data through EMR and seamlessly integrate it with SageMakerBuild deep learning models on AWS using TensorFlow and deploy them as servicesEnhance your apps by combining Apache Spark and Amazon SageMakerWho this book is for This book is for data scientists, machine learning developers, deep learning enthusiasts and AWS users who want to build advanced models and smart applications on the cloud using AWS and its integration services. Some understanding of machine learning concepts, Python programming and AWS will be beneficial.

Mastering Machine Learning on AWS

Mastering Machine Learning on AWS
Author: Dr. Saket S.R. Mengle
Publisher: Packt Publishing Ltd
Total Pages: 293
Release: 2019-05-20
Genre: Computers
ISBN: 1789347505

Gain expertise in ML techniques with AWS to create interactive apps using SageMaker, Apache Spark, and TensorFlow. Key FeaturesBuild machine learning apps on Amazon Web Services (AWS) using SageMaker, Apache Spark and TensorFlowLearn model optimization, and understand how to scale your models using simple and secure APIsDevelop, train, tune and deploy neural network models to accelerate model performance in the cloudBook Description AWS is constantly driving new innovations that empower data scientists to explore a variety of machine learning (ML) cloud services. This book is your comprehensive reference for learning and implementing advanced ML algorithms in AWS cloud. As you go through the chapters, you’ll gain insights into how these algorithms can be trained, tuned and deployed in AWS using Apache Spark on Elastic Map Reduce (EMR), SageMaker, and TensorFlow. While you focus on algorithms such as XGBoost, linear models, factorization machines, and deep nets, the book will also provide you with an overview of AWS as well as detailed practical applications that will help you solve real-world problems. Every practical application includes a series of companion notebooks with all the necessary code to run on AWS. In the next few chapters, you will learn to use SageMaker and EMR Notebooks to perform a range of tasks, right from smart analytics, and predictive modeling, through to sentiment analysis. By the end of this book, you will be equipped with the skills you need to effectively handle machine learning projects and implement and evaluate algorithms on AWS. What you will learnManage AI workflows by using AWS cloud to deploy services that feed smart data productsUse SageMaker services to create recommendation modelsScale model training and deployment using Apache Spark on EMRUnderstand how to cluster big data through EMR and seamlessly integrate it with SageMakerBuild deep learning models on AWS using TensorFlow and deploy them as servicesEnhance your apps by combining Apache Spark and Amazon SageMakerWho this book is for This book is for data scientists, machine learning developers, deep learning enthusiasts and AWS users who want to build advanced models and smart applications on the cloud using AWS and its integration services. Some understanding of machine learning concepts, Python programming and AWS will be beneficial.

Mastering Machine Learning: A Comprehensive Guide to Success

Mastering Machine Learning: A Comprehensive Guide to Success
Author: Rick Spair
Publisher: Rick Spair
Total Pages: 462
Release:
Genre: Computers
ISBN:

Welcome to "Mastering Machine Learning: A Comprehensive Guide to Success." In this book, we embark on an exciting journey into the world of machine learning (ML), exploring its concepts, techniques, and practical applications. Whether you are a beginner taking your first steps into the field or an experienced practitioner seeking to deepen your knowledge, this comprehensive guide will equip you with the tools, strategies, and insights needed to succeed in the ever-evolving landscape of ML. Machine learning is a rapidly advancing field that has revolutionized industries and transformed the way we tackle complex problems. From personalized recommendations and speech recognition systems to autonomous vehicles and medical diagnostics, machine learning has become an integral part of our daily lives. Its ability to analyze vast amounts of data, identify patterns, and make predictions has paved the way for groundbreaking advancements across various domains. However, mastering machine learning requires more than just understanding the algorithms and techniques. It requires a holistic approach that encompasses data collection and preparation, exploratory data analysis, model building, evaluation, deployment, and continuous learning. It also demands a deep understanding of the ethical and social implications of machine learning, ensuring responsible and fair use of this powerful technology. In this book, we have carefully crafted 20 comprehensive chapters that cover a wide range of topics, from the fundamentals of machine learning to advanced techniques and future trends. Each chapter provides a deep dive into a specific aspect of machine learning, offering tips, recommendations, and strategies for success. You will learn about various algorithms, data preprocessing techniques, model evaluation methods, interpretability approaches, and much more. Throughout the book, we emphasize a practical approach to machine learning. Real-world examples, case studies, and hands-on exercises are incorporated to help you gain a deeper understanding of the concepts and apply them to your own projects. We believe that active learning and practical experience are crucial for mastering machine learning, and we encourage you to explore, experiment, and build your own models. While this book serves as a comprehensive guide, it is important to note that machine learning is a rapidly evolving field. New algorithms, techniques, and technologies are constantly emerging, and staying up-to-date with the latest advancements is essential. However, the principles and foundations discussed in this book will provide you with a solid framework to adapt and navigate the ever-changing landscape of machine learning. Whether you are an aspiring data scientist, a software engineer, a researcher, or a business professional, this book is designed to be your trusted companion in your journey to mastering machine learning. By the time you reach the end, you will have gained a deep understanding of the fundamental concepts, acquired practical skills for applying machine learning in real-world scenarios, and developed the mindset needed to tackle complex challenges and drive innovation. Get ready to embark on an exciting adventure into the world of machine learning. Let's begin our journey towards mastering machine learning and unlocking its full potential. Happy learning!

Mastering Machine Learning

Mastering Machine Learning
Author: Cybellium Ltd
Publisher: Cybellium Ltd
Total Pages: 335
Release: 2023-09-05
Genre: Computers
ISBN:

Are you ready to become a master of machine learning? In "Mastering Machine Learning" by Kris Hermans, you'll embark on a transformative journey that will empower you with the skills and knowledge needed to conquer the world of data-driven intelligence. Discover Cutting-Edge Techniques and Practical Applications From self-driving cars to personalized recommendations, machine learning is transforming industries and reshaping the way we live and work. In this comprehensive guide, Kris Hermans equips you with the tools to harness the power of machine learning. Dive into the core concepts, algorithms, and models that underpin this revolutionary field. Become a Proficient Practitioner Whether you're a beginner or an experienced professional, this book provides a clear and structured path to mastering machine learning. Through hands-on examples and real-world case studies, you'll gain practical expertise in implementing machine learning models and solving complex problems. Kris Hermans guides you through the process, ensuring you develop a deep understanding of the techniques and algorithms that drive intelligent systems. From Fundamentals to Advanced Topics "Mastering Machine Learning" covers the full spectrum of machine learning, starting with the foundations of supervised and unsupervised learning and progressing to reinforcement learning, neural networks, and deep learning. Explore diverse models and learn how to choose the right approach for different applications. With this knowledge, you'll be able to tackle real-world challenges with confidence. Unlock the Potential of Machine Learning Across Industries Discover how machine learning is revolutionizing industries such as finance, healthcare, e-commerce, and cybersecurity. Through captivating case studies, you'll witness the transformative impact of machine learning and gain insights into how organizations are leveraging this technology to drive innovation, improve decision-making, and achieve unprecedented success. Navigate Ethical Considerations As machine learning becomes increasingly powerful, it's crucial to consider the ethical implications. "Mastering Machine Learning" addresses these important considerations head-on. Learn about the ethical challenges and responsibilities associated with machine learning applications and gain the knowledge to make informed, ethical decisions in your own work.

Mastering AWS Serverless

Mastering AWS Serverless
Author: Miguel A. Calles
Publisher: BPB Publications
Total Pages: 532
Release: 2024-04-29
Genre: Computers
ISBN: 9355516118

Master the art of designing and creating serverless architectures and applications KEY FEATURES ● Learn to create serverless applications that leverage serverless functions, databases, data stores, and application programming interfaces. ● Learn the serverless concepts needed to provide serverless solutions for websites, mobile apps, APIs, backends, notifications, Artificial Intelligence, and Machine Learning. ● Create serverless, event-driven architectures and designs through hands-on exercises throughout the book. DESCRIPTION Serverless computing is relatively new compared to server-based designs. Amazon Web Services launched its serverless computing offering by introducing AWS Lambda. Lambda has introduced a revolution in cloud computing, where servers could be excluded from architectures, and events could be used to trigger other resources. The AWS serverless services have allowed developers, startups, and large enterprises to focus more on developing and creating features and spend less time managing and securing servers. It covers key concepts like serverless architecture and AWS services. You will learn to create event-driven apps, launch websites, and build APIs with hands-on exercises. The book will explore storage options and data processing, including serverless Machine Learning. Discover best practices for architecture, security, and cost optimization. The book will cover advanced topics like AWS SAM and Lambda layers for complex workflows. Finally, get guidance on creating new serverless apps and migrating existing ones. The knowledge gained from this book will help you create a serverless website, application programming interface, and backend. In addition, the information covered in the book will help you process and analyze data using a serverless design. WHAT YOU WILL LEARN ● Creating a serverless website using Amazon S3 and CloudFront. ● Creating a serverless API using Amazon API Gateway. ● Create serverless functions with AWS Lambda. ● Save data using Amazon DynamoDB and Amazon S3. ● Perform authentication and authorization with Amazon Cognito. WHO THIS BOOK IS FOR The book targets professionals and students who want to gain experience in software development, cloud computing, web development, data processing, or Amazon Web Services. It is ideal for cloud architects, developers, and backend engineers seeking to leverage serverless services for scalable and cost-effective applications. TABLE OF CONTENTS 1. Introduction to AWS Serverless 2. Overview of Serverless Applications 3. Designing Serverless Architectures 4. Launching a Website 5. Creating an API 6. Saving and Using Data 7. Adding Authentication and Authorization 8. Processing Data using Automation and Machine Learning 9. Sending Notifications 10. Additional Automation Topics 11. Architecture Best Practices 12. Next Steps

Mastering Machine Learning with R

Mastering Machine Learning with R
Author: Cory Lesmeister
Publisher: Packt Publishing Ltd
Total Pages: 410
Release: 2017-04-24
Genre: Computers
ISBN: 1787284484

Master machine learning techniques with R to deliver insights in complex projects About This Book Understand and apply machine learning methods using an extensive set of R packages such as XGBOOST Understand the benefits and potential pitfalls of using machine learning methods such as Multi-Class Classification and Unsupervised Learning Implement advanced concepts in machine learning with this example-rich guide Who This Book Is For This book is for data science professionals, data analysts, or anyone with a working knowledge of machine learning, with R who now want to take their skills to the next level and become an expert in the field. What You Will Learn Gain deep insights into the application of machine learning tools in the industry Manipulate data in R efficiently to prepare it for analysis Master the skill of recognizing techniques for effective visualization of data Understand why and how to create test and training data sets for analysis Master fundamental learning methods such as linear and logistic regression Comprehend advanced learning methods such as support vector machines Learn how to use R in a cloud service such as Amazon In Detail This book will teach you advanced techniques in machine learning with the latest code in R 3.3.2. You will delve into statistical learning theory and supervised learning; design efficient algorithms; learn about creating Recommendation Engines; use multi-class classification and deep learning; and more. You will explore, in depth, topics such as data mining, classification, clustering, regression, predictive modeling, anomaly detection, boosted trees with XGBOOST, and more. More than just knowing the outcome, you'll understand how these concepts work and what they do. With a slow learning curve on topics such as neural networks, you will explore deep learning, and more. By the end of this book, you will be able to perform machine learning with R in the cloud using AWS in various scenarios with different datasets. Style and approach The book delivers practical and real-world solutions to problems and a variety of tasks such as complex recommendation systems. By the end of this book, you will have gained expertise in performing R machine learning and will be able to build complex machine learning projects using R and its packages.

AWS Certified Machine Learning Specialty: MLS-C01 Certification Guide

AWS Certified Machine Learning Specialty: MLS-C01 Certification Guide
Author: Somanath Nanda
Publisher: Packt Publishing Ltd
Total Pages: 338
Release: 2021-03-19
Genre: Computers
ISBN: 1800568436

Prepare to achieve AWS Machine Learning Specialty certification with this complete, up-to-date guide and take the exam with confidence Key Features Get to grips with core machine learning algorithms along with AWS implementation Build model training and inference pipelines and deploy machine learning models to the Amazon Web Services (AWS) cloud Learn all about the AWS services available for machine learning in order to pass the MLS-C01 exam Book DescriptionThe AWS Certified Machine Learning Specialty exam tests your competency to perform machine learning (ML) on AWS infrastructure. This book covers the entire exam syllabus using practical examples to help you with your real-world machine learning projects on AWS. Starting with an introduction to machine learning on AWS, you'll learn the fundamentals of machine learning and explore important AWS services for artificial intelligence (AI). You'll then see how to prepare data for machine learning and discover a wide variety of techniques for data manipulation and transformation for different types of variables. The book also shows you how to handle missing data and outliers and takes you through various machine learning tasks such as classification, regression, clustering, forecasting, anomaly detection, text mining, and image processing, along with the specific ML algorithms you need to know to pass the exam. Finally, you'll explore model evaluation, optimization, and deployment and get to grips with deploying models in a production environment and monitoring them. By the end of this book, you'll have gained knowledge of the key challenges in machine learning and the solutions that AWS has released for each of them, along with the tools, methods, and techniques commonly used in each domain of AWS ML.What you will learn Understand all four domains covered in the exam, along with types of questions, exam duration, and scoring Become well-versed with machine learning terminologies, methodologies, frameworks, and the different AWS services for machine learning Get to grips with data preparation and using AWS services for batch and real-time data processing Explore the built-in machine learning algorithms in AWS and build and deploy your own models Evaluate machine learning models and tune hyperparameters Deploy machine learning models with the AWS infrastructure Who this book is for This AWS book is for professionals and students who want to prepare for and pass the AWS Certified Machine Learning Specialty exam or gain deeper knowledge of machine learning with a special focus on AWS. Beginner-level knowledge of machine learning and AWS services is necessary before getting started with this book.

Mastering PyTorch

Mastering PyTorch
Author: Ashish Ranjan Jha
Publisher: Packt Publishing Ltd
Total Pages: 559
Release: 2024-05-31
Genre: Computers
ISBN: 180107996X

Master advanced techniques and algorithms for machine learning with PyTorch using real-world examples Updated for PyTorch 2.x, including integration with Hugging Face, mobile deployment, diffusion models, and graph neural networks Purchase of the print or Kindle book includes a free eBook in PDF format Key Features Understand how to use PyTorch to build advanced neural network models Get the best from PyTorch by working with Hugging Face, fastai, PyTorch Lightning, PyTorch Geometric, Flask, and Docker Unlock faster training with multiple GPUs and optimize model deployment using efficient inference frameworks Book DescriptionPyTorch is making it easier than ever before for anyone to build deep learning applications. This PyTorch deep learning book will help you uncover expert techniques to get the most out of your data and build complex neural network models. You’ll build convolutional neural networks for image classification and recurrent neural networks and transformers for sentiment analysis. As you advance, you'll apply deep learning across different domains, such as music, text, and image generation, using generative models, including diffusion models. You'll not only build and train your own deep reinforcement learning models in PyTorch but also learn to optimize model training using multiple CPUs, GPUs, and mixed-precision training. You’ll deploy PyTorch models to production, including mobile devices. Finally, you’ll discover the PyTorch ecosystem and its rich set of libraries. These libraries will add another set of tools to your deep learning toolbelt, teaching you how to use fastai to prototype models and PyTorch Lightning to train models. You’ll discover libraries for AutoML and explainable AI (XAI), create recommendation systems, and build language and vision transformers with Hugging Face. By the end of this book, you'll be able to perform complex deep learning tasks using PyTorch to build smart artificial intelligence models.What you will learn Implement text, vision, and music generation models using PyTorch Build a deep Q-network (DQN) model in PyTorch Deploy PyTorch models on mobile devices (Android and iOS) Become well versed in rapid prototyping using PyTorch with fastai Perform neural architecture search effectively using AutoML Easily interpret machine learning models using Captum Design ResNets, LSTMs, and graph neural networks (GNNs) Create language and vision transformer models using Hugging Face Who this book is for This deep learning with PyTorch book is for data scientists, machine learning engineers, machine learning researchers, and deep learning practitioners looking to implement advanced deep learning models using PyTorch. This book is ideal for those looking to switch from TensorFlow to PyTorch. Working knowledge of deep learning with Python is required.

Mastering Machine Learning with Python in Six Steps

Mastering Machine Learning with Python in Six Steps
Author: Manohar Swamynathan
Publisher: Apress
Total Pages: 469
Release: 2019-10-01
Genre: Computers
ISBN: 148424947X

Explore fundamental to advanced Python 3 topics in six steps, all designed to make you a worthy practitioner. This updated version’s approach is based on the “six degrees of separation” theory, which states that everyone and everything is a maximum of six steps away and presents each topic in two parts: theoretical concepts and practical implementation using suitable Python 3 packages. You’ll start with the fundamentals of Python 3 programming language, machine learning history, evolution, and the system development frameworks. Key data mining/analysis concepts, such as exploratory analysis, feature dimension reduction, regressions, time series forecasting and their efficient implementation in Scikit-learn are covered as well. You’ll also learn commonly used model diagnostic and tuning techniques. These include optimal probability cutoff point for class creation, variance, bias, bagging, boosting, ensemble voting, grid search, random search, Bayesian optimization, and the noise reduction technique for IoT data. Finally, you’ll review advanced text mining techniques, recommender systems, neural networks, deep learning, reinforcement learning techniques and their implementation. All the code presented in the book will be available in the form of iPython notebooks to enable you to try out these examples and extend them to your advantage. What You'll Learn Understand machine learning development and frameworksAssess model diagnosis and tuning in machine learningExamine text mining, natuarl language processing (NLP), and recommender systemsReview reinforcement learning and CNN Who This Book Is For Python developers, data engineers, and machine learning engineers looking to expand their knowledge or career into machine learning area.

Automated Machine Learning

Automated Machine Learning
Author: Adnan Masood
Publisher: Packt Publishing Ltd
Total Pages: 312
Release: 2021-02-18
Genre: Computers
ISBN: 1800565526

Get to grips with automated machine learning and adopt a hands-on approach to AutoML implementation and associated methodologies Key FeaturesGet up to speed with AutoML using OSS, Azure, AWS, GCP, or any platform of your choiceEliminate mundane tasks in data engineering and reduce human errors in machine learning modelsFind out how you can make machine learning accessible for all users to promote decentralized processesBook Description Every machine learning engineer deals with systems that have hyperparameters, and the most basic task in automated machine learning (AutoML) is to automatically set these hyperparameters to optimize performance. The latest deep neural networks have a wide range of hyperparameters for their architecture, regularization, and optimization, which can be customized effectively to save time and effort. This book reviews the underlying techniques of automated feature engineering, model and hyperparameter tuning, gradient-based approaches, and much more. You'll discover different ways of implementing these techniques in open source tools and then learn to use enterprise tools for implementing AutoML in three major cloud service providers: Microsoft Azure, Amazon Web Services (AWS), and Google Cloud Platform. As you progress, you’ll explore the features of cloud AutoML platforms by building machine learning models using AutoML. The book will also show you how to develop accurate models by automating time-consuming and repetitive tasks in the machine learning development lifecycle. By the end of this machine learning book, you’ll be able to build and deploy AutoML models that are not only accurate, but also increase productivity, allow interoperability, and minimize feature engineering tasks. What you will learnExplore AutoML fundamentals, underlying methods, and techniquesAssess AutoML aspects such as algorithm selection, auto featurization, and hyperparameter tuning in an applied scenarioFind out the difference between cloud and operations support systems (OSS)Implement AutoML in enterprise cloud to deploy ML models and pipelinesBuild explainable AutoML pipelines with transparencyUnderstand automated feature engineering and time series forecastingAutomate data science modeling tasks to implement ML solutions easily and focus on more complex problemsWho this book is for Citizen data scientists, machine learning developers, artificial intelligence enthusiasts, or anyone looking to automatically build machine learning models using the features offered by open source tools, Microsoft Azure Machine Learning, AWS, and Google Cloud Platform will find this book useful. Beginner-level knowledge of building ML models is required to get the best out of this book. Prior experience in using Enterprise cloud is beneficial.