Mastering Ai Powered Trading Bots For Options
Download Mastering Ai Powered Trading Bots For Options full books in PDF, epub, and Kindle. Read online free Mastering Ai Powered Trading Bots For Options ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Jeffery Long |
Publisher | : Jeffery William Long |
Total Pages | : 112 |
Release | : 2024-08-15 |
Genre | : Computers |
ISBN | : |
Mastering AI-Powered Trading Bots for Options Analyzing Large Amounts of Data Faster Than Humans Can Read AI can help traders make more informed decisions by analyzing large amounts of data and identifying patterns that humans may miss. Some ways AI can help in trading options include: 1. Predictive analytics: AI algorithms can analyze historical market data and predict future price movements, helping traders make more accurate decisions on which options to buy. 2. Sentiment analysis: AI can analyze news articles, social media posts, and other sources of information to gauge market sentiment and identify potential trading opportunities. 3. Risk management: AI can help traders manage risk by analyzing their portfolio and identifying potential risks and opportunities for hedging. 4. Automation: AI can automate the trading process, executing trades based on predetermined criteria and removing human emotion from the decision-making process. 5. Machine learning: AI can continuously learn from past trading data and optimize trading strategies over time, adapting to changing market conditions and improving performance. Overall, AI can help traders make more informed decisions, reduce risk, and potentially increase returns when trading options. Chapter 1: Introduction to AI and Option Trading Welcome to the exciting world of AI-powered trading bots for executing options trades. In this subchapter, we will explore the fundamentals of AI and option trading, providing you with a solid foundation to begin your journey into the world of trading stocks and options. Whether you are a novice trader looking to learn the basics or an experienced investor seeking to leverage the power of AI technology in your trading strategies, this subchapter is designed to help you understand the key concepts and principles that drive success in the world of option trading. First and foremost, it is important to understand what AI is and how it is revolutionizing the way we approach financial markets. Artificial intelligence, or AI, refers to the simulation of human intelligence processes by machines, particularly computer systems. In the context of option trading, AI can be used to analyze vast amounts of data, identify patterns and trends, and make informed decisions about when to buy or sell options. By harnessing the power of AI technology, traders can gain a competitive edge in the market and increase their chances of success.
Author | : Stefan Jansen |
Publisher | : Packt Publishing Ltd |
Total Pages | : 822 |
Release | : 2020-07-31 |
Genre | : Business & Economics |
ISBN | : 1839216786 |
Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key FeaturesDesign, train, and evaluate machine learning algorithms that underpin automated trading strategiesCreate a research and strategy development process to apply predictive modeling to trading decisionsLeverage NLP and deep learning to extract tradeable signals from market and alternative dataBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learnLeverage market, fundamental, and alternative text and image dataResearch and evaluate alpha factors using statistics, Alphalens, and SHAP valuesImplement machine learning techniques to solve investment and trading problemsBacktest and evaluate trading strategies based on machine learning using Zipline and BacktraderOptimize portfolio risk and performance analysis using pandas, NumPy, and pyfolioCreate a pairs trading strategy based on cointegration for US equities and ETFsTrain a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes dataWho this book is for If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.
Author | : Jeremy Kahn |
Publisher | : Simon and Schuster |
Total Pages | : 336 |
Release | : 2024-07-09 |
Genre | : Computers |
ISBN | : 1668053349 |
A Fortune magazine journalist draws on his expertise and extensive contacts among the companies and scientists at the forefront of artificial intelligence to offer dramatic predictions of AI’s impact over the next decade, from reshaping our economy and the way we work, learn, and create to unknitting our social fabric, jeopardizing our democracy, and fundamentally altering the way we think. Within the next five years, Jeremy Kahn predicts, AI will disrupt almost every industry and enterprise, with vastly increased efficiency and productivity. It will restructure the workforce, making AI copilots a must for every knowledge worker. It will revamp education, meaning children around the world can have personal, portable tutors. It will revolutionize health care, making individualized, targeted pharmaceuticals more affordable. It will compel us to reimagine how we make art, compose music, and write and publish books. The potential of generative AI to extend our skills, talents, and creativity as humans is undeniably exciting and promising. But while this new technology has a bright future, it also casts a dark and fearful shadow. AI will provoke pervasive, disruptive, potentially devastating knock-on effects. Leveraging his unrivaled access to the leaders, scientists, futurists, and others who are making AI a reality, Kahn will argue that if not carefully designed and vigilantly regulated AI will deepen income inequality, depressing wages while imposing winner-take-all markets across much of the economy. AI risks undermining democracy, as truth is overtaken by misinformation, racial bias, and harmful stereotypes. Continuing a process begun by the internet, AI will rewire our brains, likely inhibiting our ability to think critically, to remember, and even to get along with one another—unless we all take decisive action to prevent this from happening. Much as Michael Lewis’s classic The New New Thing offered a prescient, insightful, and eminently readable account of life inside the dot-com bubble, Mastering AI delivers much-needed guidance for anyone eager to understand the AI boom—and what comes next.
Author | : Yves Hilpisch |
Publisher | : O'Reilly Media |
Total Pages | : 380 |
Release | : 2020-11-12 |
Genre | : Computers |
ISBN | : 1492053325 |
Algorithmic trading, once the exclusive domain of institutional players, is now open to small organizations and individual traders using online platforms. The tool of choice for many traders today is Python and its ecosystem of powerful packages. In this practical book, author Yves Hilpisch shows students, academics, and practitioners how to use Python in the fascinating field of algorithmic trading. You'll learn several ways to apply Python to different aspects of algorithmic trading, such as backtesting trading strategies and interacting with online trading platforms. Some of the biggest buy- and sell-side institutions make heavy use of Python. By exploring options for systematically building and deploying automated algorithmic trading strategies, this book will help you level the playing field. Set up a proper Python environment for algorithmic trading Learn how to retrieve financial data from public and proprietary data sources Explore vectorization for financial analytics with NumPy and pandas Master vectorized backtesting of different algorithmic trading strategies Generate market predictions by using machine learning and deep learning Tackle real-time processing of streaming data with socket programming tools Implement automated algorithmic trading strategies with the OANDA and FXCM trading platforms
Author | : Hubert Henry Ward |
Publisher | : Springer Nature |
Total Pages | : 724 |
Release | : |
Genre | : |
ISBN | : |
Author | : Tom Costello |
Publisher | : Https: //Www.Isbnservices.COM |
Total Pages | : 344 |
Release | : 2021-02-05 |
Genre | : |
ISBN | : 9781637958476 |
Getting into the Hedge Fund industry is hard, being successful in the hedge fund industry is even harder. But the most successful people in the hedge fund industry all have some ideas in common that often mean the difference between success and failure. The Front Office is a guide to those ideas. It's a manual for learning how to think about markets in the way that's most likely to lead to sustained success in the way that the top Institutions, Investment Banks and Hedge Funds do. Anyone can tell you how to register a corporation or how to connect to a lawyer or broker. This isn't a book about those 'back office' issues. This is a book about the hardest part of running a hedge fund. The part that the vast majority of small hedge funds and trading system developers never learn on their own. The part that the accountants, settlement clerks, and back office staffers don't ever see. It explains why some trading systems never reach profitability, why some can't seem to stay profitable, and what to do about it if that happens to you. This isn't a get rich quick book for your average investor. There are no easy answers in it. If you need someone to explain what a stock option is or what Beta means, you should look somewhere else. But if you think you're ready to reach for the brass ring of a career in the institutional investing world, this is an excellent guide. This book explains what those people see when they look at the markets, and what nearly all of the other investors never do.
Author | : Sourav Ghosh |
Publisher | : |
Total Pages | : 394 |
Release | : 2019-11-07 |
Genre | : Computers |
ISBN | : 9781789348347 |
Understand the fundamentals of algorithmic trading to apply algorithms to real market data and analyze the results of real-world trading strategies Key Features Understand the power of algorithmic trading in financial markets with real-world examples Get up and running with the algorithms used to carry out algorithmic trading Learn to build your own algorithmic trading robots which require no human intervention Book Description It's now harder than ever to get a significant edge over competitors in terms of speed and efficiency when it comes to algorithmic trading. Relying on sophisticated trading signals, predictive models and strategies can make all the difference. This book will guide you through these aspects, giving you insights into how modern electronic trading markets and participants operate. You'll start with an introduction to algorithmic trading, along with setting up the environment required to perform the tasks in the book. You'll explore the key components of an algorithmic trading business and aspects you'll need to take into account before starting an automated trading project. Next, you'll focus on designing, building and operating the components required for developing a practical and profitable algorithmic trading business. Later, you'll learn how quantitative trading signals and strategies are developed, and also implement and analyze sophisticated trading strategies such as volatility strategies, economic release strategies, and statistical arbitrage. Finally, you'll create a trading bot from scratch using the algorithms built in the previous sections. By the end of this book, you'll be well-versed with electronic trading markets and have learned to implement, evaluate and safely operate algorithmic trading strategies in live markets. What you will learn Understand the components of modern algorithmic trading systems and strategies Apply machine learning in algorithmic trading signals and strategies using Python Build, visualize and analyze trading strategies based on mean reversion, trend, economic releases and more Quantify and build a risk management system for Python trading strategies Build a backtester to run simulated trading strategies for improving the performance of your trading bot Deploy and incorporate trading strategies in the live market to maintain and improve profitability Who this book is for This book is for software engineers, financial traders, data analysts, and entrepreneurs. Anyone who wants to get started with algorithmic trading and understand how it works; and learn the components of a trading system, protocols and algorithms required for black box and gray box trading, and techniques for building a completely automated and profitable trading business will also find this book useful.
Author | : Yves J. Hilpisch |
Publisher | : "O'Reilly Media, Inc." |
Total Pages | : 682 |
Release | : 2018-12-05 |
Genre | : Computers |
ISBN | : 1492024295 |
The financial industry has recently adopted Python at a tremendous rate, with some of the largest investment banks and hedge funds using it to build core trading and risk management systems. Updated for Python 3, the second edition of this hands-on book helps you get started with the language, guiding developers and quantitative analysts through Python libraries and tools for building financial applications and interactive financial analytics. Using practical examples throughout the book, author Yves Hilpisch also shows you how to develop a full-fledged framework for Monte Carlo simulation-based derivatives and risk analytics, based on a large, realistic case study. Much of the book uses interactive IPython Notebooks.
Author | : Scott Patterson |
Publisher | : Crown Currency |
Total Pages | : 386 |
Release | : 2012-06-12 |
Genre | : Business & Economics |
ISBN | : 0307887197 |
A news-breaking account of the global stock market's subterranean battles, Dark Pools portrays the rise of the "bots"--artificially intelligent systems that execute trades in milliseconds and use the cover of darkness to out-maneuver the humans who've created them. In the beginning was Josh Levine, an idealistic programming genius who dreamed of wresting control of the market from the big exchanges that, again and again, gave the giant institutions an advantage over the little guy. Levine created a computerized trading hub named Island where small traders swapped stocks, and over time his invention morphed into a global electronic stock market that sent trillions in capital through a vast jungle of fiber-optic cables. By then, the market that Levine had sought to fix had turned upside down, birthing secretive exchanges called dark pools and a new species of trading machines that could think, and that seemed, ominously, to be slipping the control of their human masters. Dark Pools is the fascinating story of how global markets have been hijacked by trading robots--many so self-directed that humans can't predict what they'll do next.
Author | : Jiri Pik |
Publisher | : Packt Publishing Ltd |
Total Pages | : 360 |
Release | : 2021-04-29 |
Genre | : Computers |
ISBN | : 1838988807 |
Build and backtest your algorithmic trading strategies to gain a true advantage in the market Key FeaturesGet quality insights from market data, stock analysis, and create your own data visualisationsLearn how to navigate the different features in Python's data analysis librariesStart systematically approaching quantitative research and strategy generation/backtesting in algorithmic tradingBook Description Creating an effective system to automate your trading can help you achieve two of every trader's key goals; saving time and making money. But to devise a system that will work for you, you need guidance to show you the ropes around building a system and monitoring its performance. This is where Hands-on Financial Trading with Python can give you the advantage. This practical Python book will introduce you to Python and tell you exactly why it's the best platform for developing trading strategies. You'll then cover quantitative analysis using Python, and learn how to build algorithmic trading strategies with Zipline using various market data sources. Using Zipline as the backtesting library allows access to complimentary US historical daily market data until 2018. As you advance, you will gain an in-depth understanding of Python libraries such as NumPy and pandas for analyzing financial datasets, and explore Matplotlib, statsmodels, and scikit-learn libraries for advanced analytics. As you progress, you'll pick up lots of skills like time series forecasting, covering pmdarima and Facebook Prophet. By the end of this trading book, you will be able to build predictive trading signals, adopt basic and advanced algorithmic trading strategies, and perform portfolio optimization to help you get —and stay—ahead of the markets. What you will learnDiscover how quantitative analysis works by covering financial statistics and ARIMAUse core Python libraries to perform quantitative research and strategy development using real datasetsUnderstand how to access financial and economic data in PythonImplement effective data visualization with MatplotlibApply scientific computing and data visualization with popular Python librariesBuild and deploy backtesting algorithmic trading strategiesWho this book is for If you're a financial trader or a data analyst who wants a hands-on introduction to designing algorithmic trading strategies, then this book is for you. You don't have to be a fully-fledged programmer to dive into this book, but knowing how to use Python's core libraries and a solid grasp on statistics will help you get the most out of this book.