Master Generative Ai With Llms A Practical Guide With Exercises
Download Master Generative Ai With Llms A Practical Guide With Exercises full books in PDF, epub, and Kindle. Read online free Master Generative Ai With Llms A Practical Guide With Exercises ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Anand Vemula |
Publisher | : Anand Vemula |
Total Pages | : 72 |
Release | : |
Genre | : Computers |
ISBN | : |
This book equips you with the skills to harness the power of Generative AI, specifically Large Language Models (LLMs), to create various text formats. Get ready to experiment, explore, and unleash your creative potential! Part 1: Unveiling the Power of Generative AI and LLMs We'll begin by demystifying Generative AI and understanding how it transforms text creation. You'll then delve into the capabilities of LLMs, the powerhouse behind this technology. Through interactive exercises, you'll gain firsthand experience with pre-trained LLMs, exploring their strengths and limitations. Part 2: Mastering Text Generation Techniques Now that you're familiar with the tools, let's explore specific techniques for generating different text formats: Text Inpainting: Imagine restoring missing sections of historical documents or poems. We'll use LLMs to fill the gaps and reconstruct the text, putting your detective skills to the test with hands-on exercises. Text Summarization: Information overload is real! Learn how to leverage LLMs to create concise summaries of lengthy texts, like research papers or news articles. You'll practice generating summaries for presentations or reports through engaging exercises. Part 3: Unleashing Your Inner AI Artist Get ready to tap into your creative side! We'll explore how LLMs can assist you in crafting various artistic text formats: Storytelling: Spark your imagination with a starting line and see where the story unfolds! Prompt the LLM and collaborate on creating engaging narratives. Exercises will guide you in co-writing stories with an LLM, taking turns adding sentences. Poetry: Let the AI muse inspire you! We'll experiment with generating poems in different styles, from classic sonnets to modern haikus. Challenge yourself with themed haiku writing exercises using LLMs. Code Generation: Stuck on a coding problem? Discover how LLMs can become your coding assistant! We'll explore using LLMs for code completion and bug detection, putting their capabilities to the test with practical exercises. Part 4: Refining Your Craft - Advanced Techniques Ready to take your skills a step further? We'll delve into advanced techniques for generating more refined and controlled text outputs: Conditional Text Generation: Imagine guiding the LLM to create text that adheres to specific requirements. We'll experiment with specifying genre, style, or even keywords to influence the narrative in your exercises. Sampling Techniques: Discover how to generate diverse outputs from a single prompt! Explore different sampling techniques with LLMs and see how they impact the creativity and unexpectedness of the generated text. You'll compare and analyze outputs generated with different sampling methods. Style and Tone Control: Want your text to sound formal, funny, or even sarcastic? You'll learn how to control the stylistic elements of the generated text, tailoring it to your specific needs. Exercises will guide you in generating product descriptions with different writing styles. By the end of this workshop, you'll be a confident generative AI text creator, equipped with the skills to experiment with LLMs and produce creative, informative, and engaging text formats tailored to your needs
Author | : Barbara Oakley, PhD |
Publisher | : Penguin |
Total Pages | : 258 |
Release | : 2018-08-07 |
Genre | : Juvenile Nonfiction |
ISBN | : 052550446X |
A surprisingly simple way for students to master any subject--based on one of the world's most popular online courses and the bestselling book A Mind for Numbers A Mind for Numbers and its wildly popular online companion course "Learning How to Learn" have empowered more than two million learners of all ages from around the world to master subjects that they once struggled with. Fans often wish they'd discovered these learning strategies earlier and ask how they can help their kids master these skills as well. Now in this new book for kids and teens, the authors reveal how to make the most of time spent studying. We all have the tools to learn what might not seem to come naturally to us at first--the secret is to understand how the brain works so we can unlock its power. This book explains: Why sometimes letting your mind wander is an important part of the learning process How to avoid "rut think" in order to think outside the box Why having a poor memory can be a good thing The value of metaphors in developing understanding A simple, yet powerful, way to stop procrastinating Filled with illustrations, application questions, and exercises, this book makes learning easy and fun.
Author | : Mark Treveil |
Publisher | : "O'Reilly Media, Inc." |
Total Pages | : 171 |
Release | : 2020-11-30 |
Genre | : Computers |
ISBN | : 1098116429 |
More than half of the analytics and machine learning (ML) models created by organizations today never make it into production. Some of the challenges and barriers to operationalization are technical, but others are organizational. Either way, the bottom line is that models not in production can't provide business impact. This book introduces the key concepts of MLOps to help data scientists and application engineers not only operationalize ML models to drive real business change but also maintain and improve those models over time. Through lessons based on numerous MLOps applications around the world, nine experts in machine learning provide insights into the five steps of the model life cycle--Build, Preproduction, Deployment, Monitoring, and Governance--uncovering how robust MLOps processes can be infused throughout. This book helps you: Fulfill data science value by reducing friction throughout ML pipelines and workflows Refine ML models through retraining, periodic tuning, and complete remodeling to ensure long-term accuracy Design the MLOps life cycle to minimize organizational risks with models that are unbiased, fair, and explainable Operationalize ML models for pipeline deployment and for external business systems that are more complex and less standardized
Author | : Trevor Hastie |
Publisher | : Springer Science & Business Media |
Total Pages | : 545 |
Release | : 2013-11-11 |
Genre | : Mathematics |
ISBN | : 0387216065 |
During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book’s coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for “wide” data (p bigger than n), including multiple testing and false discovery rates. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.
Author | : Noah Gift |
Publisher | : Addison-Wesley Professional |
Total Pages | : 720 |
Release | : 2018-07-12 |
Genre | : Computers |
ISBN | : 0134863917 |
Master Powerful Off-the-Shelf Business Solutions for AI and Machine Learning Pragmatic AI will help you solve real-world problems with contemporary machine learning, artificial intelligence, and cloud computing tools. Noah Gift demystifies all the concepts and tools you need to get results—even if you don’t have a strong background in math or data science. Gift illuminates powerful off-the-shelf cloud offerings from Amazon, Google, and Microsoft, and demonstrates proven techniques using the Python data science ecosystem. His workflows and examples help you streamline and simplify every step, from deployment to production, and build exceptionally scalable solutions. As you learn how machine language (ML) solutions work, you’ll gain a more intuitive understanding of what you can achieve with them and how to maximize their value. Building on these fundamentals, you’ll walk step-by-step through building cloud-based AI/ML applications to address realistic issues in sports marketing, project management, product pricing, real estate, and beyond. Whether you’re a business professional, decision-maker, student, or programmer, Gift’s expert guidance and wide-ranging case studies will prepare you to solve data science problems in virtually any environment. Get and configure all the tools you’ll need Quickly review all the Python you need to start building machine learning applications Master the AI and ML toolchain and project lifecycle Work with Python data science tools such as IPython, Pandas, Numpy, Juypter Notebook, and Sklearn Incorporate a pragmatic feedback loop that continually improves the efficiency of your workflows and systems Develop cloud AI solutions with Google Cloud Platform, including TPU, Colaboratory, and Datalab services Define Amazon Web Services cloud AI workflows, including spot instances, code pipelines, boto, and more Work with Microsoft Azure AI APIs Walk through building six real-world AI applications, from start to finish Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
Author | : Joseph Babcock |
Publisher | : Packt Publishing Ltd |
Total Pages | : 489 |
Release | : 2021-04-30 |
Genre | : Computers |
ISBN | : 1800208502 |
Fun and exciting projects to learn what artificial minds can create Key FeaturesCode examples are in TensorFlow 2, which make it easy for PyTorch users to follow alongLook inside the most famous deep generative models, from GPT to MuseGANLearn to build and adapt your own models in TensorFlow 2.xExplore exciting, cutting-edge use cases for deep generative AIBook Description Machines are excelling at creative human skills such as painting, writing, and composing music. Could you be more creative than generative AI? In this book, you’ll explore the evolution of generative models, from restricted Boltzmann machines and deep belief networks to VAEs and GANs. You’ll learn how to implement models yourself in TensorFlow and get to grips with the latest research on deep neural networks. There’s been an explosion in potential use cases for generative models. You’ll look at Open AI’s news generator, deepfakes, and training deep learning agents to navigate a simulated environment. Recreate the code that’s under the hood and uncover surprising links between text, image, and music generation. What you will learnExport the code from GitHub into Google Colab to see how everything works for yourselfCompose music using LSTM models, simple GANs, and MuseGANCreate deepfakes using facial landmarks, autoencoders, and pix2pix GANLearn how attention and transformers have changed NLPBuild several text generation pipelines based on LSTMs, BERT, and GPT-2Implement paired and unpaired style transfer with networks like StyleGANDiscover emerging applications of generative AI like folding proteins and creating videos from imagesWho this book is for This is a book for Python programmers who are keen to create and have some fun using generative models. To make the most out of this book, you should have a basic familiarity with math and statistics for machine learning.
Author | : Richard O. Duda |
Publisher | : John Wiley & Sons |
Total Pages | : 680 |
Release | : 2012-11-09 |
Genre | : Technology & Engineering |
ISBN | : 111858600X |
The first edition, published in 1973, has become a classicreference in the field. Now with the second edition, readers willfind information on key new topics such as neural networks andstatistical pattern recognition, the theory of machine learning,and the theory of invariances. Also included are worked examples,comparisons between different methods, extensive graphics, expandedexercises and computer project topics. An Instructor's Manual presenting detailed solutions to all theproblems in the book is available from the Wiley editorialdepartment.
Author | : Christopher M. Bishop |
Publisher | : Springer |
Total Pages | : 0 |
Release | : 2016-08-23 |
Genre | : Computers |
ISBN | : 9781493938438 |
This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Author | : Andrei Gheorghiu |
Publisher | : Packt Publishing Ltd |
Total Pages | : 368 |
Release | : 2024-05-10 |
Genre | : Computers |
ISBN | : 1805124404 |
Solve real-world problems easily with artificial intelligence (AI) using the LlamaIndex data framework to enhance your LLM-based Python applications Key Features Examine text chunking effects on RAG workflows and understand security in RAG app development Discover chatbots and agents and learn how to build complex conversation engines Build as you learn by applying the knowledge you gain to a hands-on project Book DescriptionDiscover the immense potential of Generative AI and Large Language Models (LLMs) with this comprehensive guide. Learn to overcome LLM limitations, such as contextual memory constraints, prompt size issues, real-time data gaps, and occasional ‘hallucinations’. Follow practical examples to personalize and launch your LlamaIndex projects, mastering skills in ingesting, indexing, querying, and connecting dynamic knowledge bases. From fundamental LLM concepts to LlamaIndex deployment and customization, this book provides a holistic grasp of LlamaIndex's capabilities and applications. By the end, you'll be able to resolve LLM challenges and build interactive AI-driven applications using best practices in prompt engineering and troubleshooting Generative AI projects.What you will learn Understand the LlamaIndex ecosystem and common use cases Master techniques to ingest and parse data from various sources into LlamaIndex Discover how to create optimized indexes tailored to your use cases Understand how to query LlamaIndex effectively and interpret responses Build an end-to-end interactive web application with LlamaIndex, Python, and Streamlit Customize a LlamaIndex configuration based on your project needs Predict costs and deal with potential privacy issues Deploy LlamaIndex applications that others can use Who this book is for This book is for Python developers with basic knowledge of natural language processing (NLP) and LLMs looking to build interactive LLM applications. Experienced developers and conversational AI developers will also benefit from the advanced techniques covered in the book to fully unleash the capabilities of the framework.
Author | : Raj Arun R |
Publisher | : Orange Education Pvt Ltd |
Total Pages | : 547 |
Release | : 2024-04-12 |
Genre | : Computers |
ISBN | : 8197081824 |
A Comprehensive Guide to Leverage Generative AI in the Modern Enterprise KEY FEATURES ● Gain a comprehensive understanding of LLMs within the framework of Generative AI, from foundational concepts to advanced applications. ● Dive into practical exercises and real-world applications, accompanied by detailed code walkthroughs in Python. ● Explore LLMOps with a dedicated focus on ensuring trustworthy AI and best practices for deploying, managing, and maintaining LLMs in enterprise settings. ● Prioritize the ethical and responsible use of LLMs, with an emphasis on building models that adhere to principles of fairness, transparency, and accountability, fostering trust in AI technologies. DESCRIPTION “Mastering Large Language Models with Python” is an indispensable resource that offers a comprehensive exploration of Large Language Models (LLMs), providing the essential knowledge to leverage these transformative AI models effectively. From unraveling the intricacies of LLM architecture to practical applications like code generation and AI-driven recommendation systems, readers will gain valuable insights into implementing LLMs in diverse projects. Covering both open-source and proprietary LLMs, the book delves into foundational concepts and advanced techniques, empowering professionals to harness the full potential of these models. Detailed discussions on quantization techniques for efficient deployment, operational strategies with LLMOps, and ethical considerations ensure a well-rounded understanding of LLM implementation. Through real-world case studies, code snippets, and practical examples, readers will navigate the complexities of LLMs with confidence, paving the way for innovative solutions and organizational growth. Whether you seek to deepen your understanding, drive impactful applications, or lead AI-driven initiatives, this book equips you with the tools and insights needed to excel in the dynamic landscape of artificial intelligence. WHAT WILL YOU LEARN ● In-depth study of LLM architecture and its versatile applications across industries. ● Harness open-source and proprietary LLMs to craft innovative solutions. ● Implement LLM APIs for a wide range of tasks spanning natural language processing, audio analysis, and visual recognition. ● Optimize LLM deployment through techniques such as quantization and operational strategies like LLMOps, ensuring efficient and scalable model usage. ● Master prompt engineering techniques to fine-tune LLM outputs, enhancing quality and relevance for diverse use cases. ● Navigate the complex landscape of ethical AI development, prioritizing responsible practices to drive impactful technology adoption and advancement. WHO IS THIS BOOK FOR? This book is tailored for software engineers, data scientists, AI researchers, and technology leaders with a foundational understanding of machine learning concepts and programming. It's ideal for those looking to deepen their knowledge of Large Language Models and their practical applications in the field of AI. If you aim to explore LLMs extensively for implementing inventive solutions or spearheading AI-driven projects, this book is tailored to your needs. TABLE OF CONTENTS 1. The Basics of Large Language Models and Their Applications 2. Demystifying Open-Source Large Language Models 3. Closed-Source Large Language Models 4. LLM APIs for Various Large Language Model Tasks 5. Integrating Cohere API in Google Sheets 6. Dynamic Movie Recommendation Engine Using LLMs 7. Document-and Web-based QA Bots with Large Language Models 8. LLM Quantization Techniques and Implementation 9. Fine-tuning and Evaluation of LLMs 10. Recipes for Fine-Tuning and Evaluating LLMs 11. LLMOps - Operationalizing LLMs at Scale 12. Implementing LLMOps in Practice Using MLflow on Databricks 13. Mastering the Art of Prompt Engineering 14. Prompt Engineering Essentials and Design Patterns 15. Ethical Considerations and Regulatory Frameworks for LLMs 16. Towards Trustworthy Generative AI (A Novel Framework Inspired by Symbolic Reasoning) Index