Markov Processes And Applications
Download Markov Processes And Applications full books in PDF, epub, and Kindle. Read online free Markov Processes And Applications ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Etienne Pardoux |
Publisher | : John Wiley & Sons |
Total Pages | : 322 |
Release | : 2008-11-20 |
Genre | : Mathematics |
ISBN | : 0470721863 |
"This well-written book provides a clear and accessible treatment of the theory of discrete and continuous-time Markov chains, with an emphasis towards applications. The mathematical treatment is precise and rigorous without superfluous details, and the results are immediately illustrated in illuminating examples. This book will be extremely useful to anybody teaching a course on Markov processes." Jean-François Le Gall, Professor at Université de Paris-Orsay, France. Markov processes is the class of stochastic processes whose past and future are conditionally independent, given their present state. They constitute important models in many applied fields. After an introduction to the Monte Carlo method, this book describes discrete time Markov chains, the Poisson process and continuous time Markov chains. It also presents numerous applications including Markov Chain Monte Carlo, Simulated Annealing, Hidden Markov Models, Annotation and Alignment of Genomic sequences, Control and Filtering, Phylogenetic tree reconstruction and Queuing networks. The last chapter is an introduction to stochastic calculus and mathematical finance. Features include: The Monte Carlo method, discrete time Markov chains, the Poisson process and continuous time jump Markov processes. An introduction to diffusion processes, mathematical finance and stochastic calculus. Applications of Markov processes to various fields, ranging from mathematical biology, to financial engineering and computer science. Numerous exercises and problems with solutions to most of them
Author | : Nicole Bäuerle |
Publisher | : Springer Science & Business Media |
Total Pages | : 393 |
Release | : 2011-06-06 |
Genre | : Mathematics |
ISBN | : 3642183247 |
The theory of Markov decision processes focuses on controlled Markov chains in discrete time. The authors establish the theory for general state and action spaces and at the same time show its application by means of numerous examples, mostly taken from the fields of finance and operations research. By using a structural approach many technicalities (concerning measure theory) are avoided. They cover problems with finite and infinite horizons, as well as partially observable Markov decision processes, piecewise deterministic Markov decision processes and stopping problems. The book presents Markov decision processes in action and includes various state-of-the-art applications with a particular view towards finance. It is useful for upper-level undergraduates, Master's students and researchers in both applied probability and finance, and provides exercises (without solutions).
Author | : Marius Iosifescu |
Publisher | : Courier Corporation |
Total Pages | : 305 |
Release | : 2014-07-01 |
Genre | : Mathematics |
ISBN | : 0486150585 |
A self-contained treatment of finite Markov chains and processes, this text covers both theory and applications. Author Marius Iosifescu, vice president of the Romanian Academy and director of its Center for Mathematical Statistics, begins with a review of relevant aspects of probability theory and linear algebra. Experienced readers may start with the second chapter, a treatment of fundamental concepts of homogeneous finite Markov chain theory that offers examples of applicable models. The text advances to studies of two basic types of homogeneous finite Markov chains: absorbing and ergodic chains. A complete study of the general properties of homogeneous chains follows. Succeeding chapters examine the fundamental role of homogeneous infinite Markov chains in mathematical modeling employed in the fields of psychology and genetics; the basics of nonhomogeneous finite Markov chain theory; and a study of Markovian dependence in continuous time, which constitutes an elementary introduction to the study of continuous parameter stochastic processes.
Author | : Jacques Janssen |
Publisher | : Springer Science & Business Media |
Total Pages | : 315 |
Release | : 2006-02-08 |
Genre | : Mathematics |
ISBN | : 0387295488 |
Aims to give to the reader the tools necessary to apply semi-Markov processes in real-life problems. The book is self-contained and, starting from a low level of probability concepts, gradually brings the reader to a deep knowledge of semi-Markov processes. Presents homogeneous and non-homogeneous semi-Markov processes, as well as Markov and semi-Markov rewards processes. The concepts are fundamental for many applications, but they are not as thoroughly presented in other books on the subject as they are here.
Author | : G. George Yin |
Publisher | : Springer Science & Business Media |
Total Pages | : 442 |
Release | : 2012-11-14 |
Genre | : Mathematics |
ISBN | : 1461443466 |
This book gives a systematic treatment of singularly perturbed systems that naturally arise in control and optimization, queueing networks, manufacturing systems, and financial engineering. It presents results on asymptotic expansions of solutions of Komogorov forward and backward equations, properties of functional occupation measures, exponential upper bounds, and functional limit results for Markov chains with weak and strong interactions. To bridge the gap between theory and applications, a large portion of the book is devoted to applications in controlled dynamic systems, production planning, and numerical methods for controlled Markovian systems with large-scale and complex structures in the real-world problems. This second edition has been updated throughout and includes two new chapters on asymptotic expansions of solutions for backward equations and hybrid LQG problems. The chapters on analytic and probabilistic properties of two-time-scale Markov chains have been almost completely rewritten and the notation has been streamlined and simplified. This book is written for applied mathematicians, engineers, operations researchers, and applied scientists. Selected material from the book can also be used for a one semester advanced graduate-level course in applied probability and stochastic processes.
Author | : Nicolas Privault |
Publisher | : Springer |
Total Pages | : 379 |
Release | : 2018-08-03 |
Genre | : Mathematics |
ISBN | : 9811306591 |
This book provides an undergraduate-level introduction to discrete and continuous-time Markov chains and their applications, with a particular focus on the first step analysis technique and its applications to average hitting times and ruin probabilities. It also discusses classical topics such as recurrence and transience, stationary and limiting distributions, as well as branching processes. It first examines in detail two important examples (gambling processes and random walks) before presenting the general theory itself in the subsequent chapters. It also provides an introduction to discrete-time martingales and their relation to ruin probabilities and mean exit times, together with a chapter on spatial Poisson processes. The concepts presented are illustrated by examples, 138 exercises and 9 problems with their solutions.
Author | : Kiyosi Itô |
Publisher | : Springer |
Total Pages | : 54 |
Release | : 2015-12-24 |
Genre | : Mathematics |
ISBN | : 981100272X |
An extension problem (often called a boundary problem) of Markov processes has been studied, particularly in the case of one-dimensional diffusion processes, by W. Feller, K. Itô, and H. P. McKean, among others. In this book, Itô discussed a case of a general Markov process with state space S and a specified point a ∈ S called a boundary. The problem is to obtain all possible recurrent extensions of a given minimal process (i.e., the process on S \ {a} which is absorbed on reaching the boundary a). The study in this lecture is restricted to a simpler case of the boundary a being a discontinuous entrance point, leaving a more general case of a continuous entrance point to future works. He established a one-to-one correspondence between a recurrent extension and a pair of a positive measure k(db) on S \ {a} (called the jumping-in measure and a non-negative number m
Author | : Oliver Ibe |
Publisher | : Newnes |
Total Pages | : 515 |
Release | : 2013-05-22 |
Genre | : Mathematics |
ISBN | : 0124078397 |
Markov processes are processes that have limited memory. In particular, their dependence on the past is only through the previous state. They are used to model the behavior of many systems including communications systems, transportation networks, image segmentation and analysis, biological systems and DNA sequence analysis, random atomic motion and diffusion in physics, social mobility, population studies, epidemiology, animal and insect migration, queueing systems, resource management, dams, financial engineering, actuarial science, and decision systems. Covering a wide range of areas of application of Markov processes, this second edition is revised to highlight the most important aspects as well as the most recent trends and applications of Markov processes. The author spent over 16 years in the industry before returning to academia, and he has applied many of the principles covered in this book in multiple research projects. Therefore, this is an applications-oriented book that also includes enough theory to provide a solid ground in the subject for the reader. - Presents both the theory and applications of the different aspects of Markov processes - Includes numerous solved examples as well as detailed diagrams that make it easier to understand the principle being presented - Discusses different applications of hidden Markov models, such as DNA sequence analysis and speech analysis.
Author | : Rabi N. Bhattacharya |
Publisher | : SIAM |
Total Pages | : 726 |
Release | : 2009-08-27 |
Genre | : Mathematics |
ISBN | : 0898716896 |
This book develops systematically and rigorously, yet in an expository and lively manner, the evolution of general random processes and their large time properties such as transience, recurrence, and convergence to steady states. The emphasis is on the most important classes of these processes from the viewpoint of theory as well as applications, namely, Markov processes. The book features very broad coverage of the most applicable aspects of stochastic processes, including sufficient material for self-contained courses on random walks in one and multiple dimensions; Markov chains in discrete and continuous times, including birth-death processes; Brownian motion and diffusions; stochastic optimization; and stochastic differential equations. This book is for graduate students in mathematics, statistics, science and engineering, and it may also be used as a reference by professionals in diverse fields whose work involves the application of probability.
Author | : Daniel W. Stroock |
Publisher | : Springer Science & Business Media |
Total Pages | : 213 |
Release | : 2013-10-28 |
Genre | : Mathematics |
ISBN | : 3642405231 |
This book provides a rigorous but elementary introduction to the theory of Markov Processes on a countable state space. It should be accessible to students with a solid undergraduate background in mathematics, including students from engineering, economics, physics, and biology. Topics covered are: Doeblin's theory, general ergodic properties, and continuous time processes. Applications are dispersed throughout the book. In addition, a whole chapter is devoted to reversible processes and the use of their associated Dirichlet forms to estimate the rate of convergence to equilibrium. These results are then applied to the analysis of the Metropolis (a.k.a simulated annealing) algorithm. The corrected and enlarged 2nd edition contains a new chapter in which the author develops computational methods for Markov chains on a finite state space. Most intriguing is the section with a new technique for computing stationary measures, which is applied to derivations of Wilson's algorithm and Kirchoff's formula for spanning trees in a connected graph.