Completely Bounded Maps and Operator Algebras

Completely Bounded Maps and Operator Algebras
Author: Vern Paulsen
Publisher: Cambridge University Press
Total Pages: 316
Release: 2002
Genre: Mathematics
ISBN: 9780521816694

In this book, first published in 2003, the reader is provided with a tour of the principal results and ideas in the theories of completely positive maps, completely bounded maps, dilation theory, operator spaces and operator algebras, together with some of their main applications. The author assumes only that the reader has a basic background in functional analysis, and the presentation is self-contained and paced appropriately for graduate students new to the subject. Experts will also want this book for their library since the author illustrates the power of methods he has developed with new and simpler proofs of some of the major results in the area, many of which have not appeared earlier in the literature. An indispensable introduction to the theory of operator spaces for all who want to know more.

Positive Linear Maps of Operator Algebras

Positive Linear Maps of Operator Algebras
Author: Erling Størmer
Publisher: Springer Science & Business Media
Total Pages: 135
Release: 2012-12-13
Genre: Mathematics
ISBN: 3642343694

This volume, setting out the theory of positive maps as it stands today, reflects the rapid growth in this area of mathematics since it was recognized in the 1990s that these applications of C*-algebras are crucial to the study of entanglement in quantum theory. The author, a leading authority on the subject, sets out numerous results previously unpublished in book form. In addition to outlining the properties and structures of positive linear maps of operator algebras into the bounded operators on a Hilbert space, he guides readers through proofs of the Stinespring theorem and its applications to inequalities for positive maps. The text examines the maps’ positivity properties, as well as their associated linear functionals together with their density operators. It features special sections on extremal positive maps and Choi matrices. In sum, this is a vital publication that covers a full spectrum of matters relating to positive linear maps, of which a large proportion is relevant and applicable to today’s quantum information theory. The latter sections of the book present the material in finite dimensions, while the text as a whole appeals to a wider and more general readership by keeping the mathematics as elementary as possible throughout.

Mappings of Operator Algebras

Mappings of Operator Algebras
Author: H. Araki
Publisher: Springer Science & Business Media
Total Pages: 311
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461204534

This volume consists of articles contributed by participants at the fourth Ja pan-U.S. Joint Seminar on Operator Algebras. The seminar took place at the University of Pennsylvania from May 23 through May 27, 1988 under the auspices of the Mathematics Department. It was sponsored and supported by the Japan Society for the Promotion of Science and the National Science Foundation (USA). This sponsorship and support is acknowledged with gratitude. The seminar was devoted to discussions and lectures on results and prob lems concerning mappings of operator algebras (C*-and von Neumann alge bras). Among the articles contained in these proceedings, there are papers dealing with actions of groups on C* algebras, completely bounded mappings, index and subfactor theory, and derivations of operator algebras. The seminar was held in honor of the sixtieth birthday of Sh6ichir6 Sakai, one of the great leaders of Functional Analysis for many decades. This vol ume is dedicated to Professor Sakai, on the occasion of that birthday, with the respect and admiration of all the contributors and the participants at the seminar. H. Araki Kyoto, Japan R. Kadison Philadelphia, Pennsylvania, USA Contents Preface.... ..... ....... ........... ...... ......... ................ ...... ............... ... vii On Convex Combinations of Unitary Operators in C*-Algebras UFFE HAAGERUP ......................................................................... .

Vertex Operator Algebras and the Monster

Vertex Operator Algebras and the Monster
Author: Igor Frenkel
Publisher: Academic Press
Total Pages: 563
Release: 1989-05-01
Genre: Mathematics
ISBN: 0080874541

This work is motivated by and develops connections between several branches of mathematics and physics--the theories of Lie algebras, finite groups and modular functions in mathematics, and string theory in physics. The first part of the book presents a new mathematical theory of vertex operator algebras, the algebraic counterpart of two-dimensional holomorphic conformal quantum field theory. The remaining part constructs the Monster finite simple group as the automorphism group of a very special vertex operator algebra, called the "moonshine module" because of its relevance to "monstrous moonshine."

Unbounded Operator Algebras and Representation Theory

Unbounded Operator Algebras and Representation Theory
Author: K. Schmüdgen
Publisher: Birkhäuser
Total Pages: 381
Release: 2013-11-11
Genre: Mathematics
ISBN: 3034874693

*-algebras of unbounded operators in Hilbert space, or more generally algebraic systems of unbounded operators, occur in a natural way in unitary representation theory of Lie groups and in the Wightman formulation of quantum field theory. In representation theory they appear as the images of the associated representations of the Lie algebras or of the enveloping algebras on the Garding domain and in quantum field theory they occur as the vector space of field operators or the *-algebra generated by them. Some of the basic tools for the general theory were first introduced and used in these fields. For instance, the notion of the weak (bounded) commutant which plays a fundamental role in thegeneraltheory had already appeared in quantum field theory early in the six ties. Nevertheless, a systematic study of unbounded operator algebras began only at the beginning of the seventies. It was initiated by (in alphabetic order) BORCHERS, LASSNER, POWERS, UHLMANN and VASILIEV. J1'rom the very beginning, and still today, represen tation theory of Lie groups and Lie algebras and quantum field theory have been primary sources of motivation and also of examples. However, the general theory of unbounded operator algebras has also had points of contact with several other disciplines. In particu lar, the theory of locally convex spaces, the theory of von Neumann algebras, distri bution theory, single operator theory, the momcnt problem and its non-commutative generalizations and noncommutative probability theory, all have interacted with our subject.

Operator Algebras and Dynamics: Groupoids, Crossed Products, and Rokhlin Dimension

Operator Algebras and Dynamics: Groupoids, Crossed Products, and Rokhlin Dimension
Author: Aidan Sims
Publisher: Springer Nature
Total Pages: 164
Release: 2020-06-22
Genre: Mathematics
ISBN: 3030397130

This book collects the notes of the lectures given at the Advanced Course on Crossed Products, Groupoids, and Rokhlin dimension, that took place at the Centre de Recerca Matemàtica (CRM) from March 13 to March 17, 2017. The notes consist of three series of lectures. The first one was given by Dana Williams (Dartmouth College), and served as an introduction to crossed products of C*-algebras and the study of their structure. The second series of lectures was delivered by Aidan Sims (Wollongong), who gave an overview of the theory of topological groupoids (as a model for groups and group actions) and groupoid C*-algebras, with particular emphasis on the case of étale groupoids. Finally, the last series was delivered by Gábor Szabó (Copenhagen), and consisted of an introduction to Rokhlin type properties (mostly centered around the work of Hirshberg, Winter and Zacharias) with hints to the more advanced theory related to groupoids.

C*-Algebras and Operator Theory

C*-Algebras and Operator Theory
Author: Gerald J. Murphy
Publisher: Academic Press
Total Pages: 297
Release: 2014-06-28
Genre: Mathematics
ISBN: 0080924964

This book constitutes a first- or second-year graduate course in operator theory. It is a field that has great importance for other areas of mathematics and physics, such as algebraic topology, differential geometry, and quantum mechanics. It assumes a basic knowledge in functional analysis but no prior acquaintance with operator theory is required.

$\textrm {C}^*$-Algebras and Finite-Dimensional Approximations

$\textrm {C}^*$-Algebras and Finite-Dimensional Approximations
Author: Nathanial Patrick Brown
Publisher: American Mathematical Soc.
Total Pages: 530
Release: 2008
Genre: Mathematics
ISBN: 0821843818

$\textrm{C}*$-approximation theory has provided the foundation for many of the most important conceptual breakthroughs and applications of operator algebras. This book systematically studies (most of) the numerous types of approximation properties that have been important in recent years: nuclearity, exactness, quasidiagonality, local reflexivity, and others. Moreover, it contains user-friendly proofs, insofar as that is possible, of many fundamental results that were previously quite hard to extract from the literature. Indeed, perhaps the most important novelty of the first ten chapters is an earnest attempt to explain some fundamental, but difficult and technical, results as painlessly as possible. The latter half of the book presents related topics and applications--written with researchers and advanced, well-trained students in mind. The authors have tried to meet the needs both of students wishing to learn the basics of an important area of research as well as researchers who desire a fairly comprehensive reference for the theory and applications of $\textrm{C}*$-approximation theory.

Crossed Products of Operator Algebras

Crossed Products of Operator Algebras
Author: Elias G. Katsoulis
Publisher: American Mathematical Soc.
Total Pages: 100
Release: 2019-04-10
Genre: Mathematics
ISBN: 1470435454

The authors study crossed products of arbitrary operator algebras by locally compact groups of completely isometric automorphisms. They develop an abstract theory that allows for generalizations of many of the fundamental results from the selfadjoint theory to our context. They complement their generic results with the detailed study of many important special cases. In particular they study crossed products of tensor algebras, triangular AF algebras and various associated C -algebras. They make contributions to the study of C -envelopes, semisimplicity, the semi-Dirichlet property, Takai duality and the Hao-Ng isomorphism problem. They also answer questions from the pertinent literature.

C*-Algebras by Example

C*-Algebras by Example
Author: Kenneth R. Davidson
Publisher: American Mathematical Society, Fields Institute
Total Pages: 325
Release: 2023-10-04
Genre: Mathematics
ISBN: 1470475081

The subject of C*-algebras received a dramatic revitalization in the 1970s by the introduction of topological methods through the work of Brown, Douglas, and Fillmore on extensions of C*-algebras and Elliott's use of $K$-theory to provide a useful classification of AF algebras. These results were the beginning of a marvelous new set of tools for analyzing concrete C*-algebras. This book is an introductory graduate level text which presents the basics of the subject through a detailed analysis of several important classes of C*-algebras. The development of operator algebras in the last twenty years has been based on a careful study of these special classes. While there are many books on C*-algebras and operator algebras available, this is the first one to attempt to explain the real examples that researchers use to test their hypotheses. Topics include AF algebras, Bunce–Deddens and Cuntz algebras, the Toeplitz algebra, irrational rotation algebras, group C*-algebras, discrete crossed products, abelian C*-algebras (spectral theory and approximate unitary equivalence) and extensions. It also introduces many modern concepts and results in the subject such as real rank zero algebras, topological stable rank, quasidiagonality, and various new constructions. These notes were compiled during the author's participation in the special year on C*-algebras at The Fields Institute for Research in Mathematical Sciences during the 1994–1995 academic year. The field of C*-algebras touches upon many other areas of mathematics such as group representations, dynamical systems, physics, $K$-theory, and topology. The variety of examples offered in this text expose the student to many of these connections. Graduate students with a solid course in functional analysis should be able to read this book. This should prepare them to read much of the current literature. This book is reasonably self-contained, and the author has provided results from other areas when necessary.