First Leaves

First Leaves
Author: Bruce W. Char
Publisher: New York : Springer-Verlag
Total Pages: 280
Release: 1992
Genre: Computers
ISBN:

Understanding Maple

Understanding Maple
Author: Ian Thompson
Publisher: Cambridge University Press
Total Pages: 237
Release: 2016-11-14
Genre: Computers
ISBN: 1316628140

This book explains the key features of Maple, with a focus on showing how things work, and how to avoid common problems.

Maple V Programming Guide

Maple V Programming Guide
Author: Waterloo Maple Incorporated
Publisher: Springer Science & Business Media
Total Pages: 391
Release: 2012-12-06
Genre: Computers
ISBN: 1461222141

Maple V Mathematics Programming Guide is the fully updated language and programming reference for Maple V Release 5. It presents a detailed description of Maple V Release 5 - the latest release of the powerful, interactive computer algebra system used worldwide as a tool for problem-solving in mathematics, the sciences, engineering, and education. This manual describes the use of both numeric and symbolic expressions, the data types available, and the programming language statements in Maple. It shows how the system can be extended or customized through user defined routines and gives complete descriptions of the system's user interface and 2D and 3D graphics capabilities.

GNU Octave

GNU Octave
Author: Jesper Schmidt Hansen
Publisher: Packt Publishing Ltd
Total Pages: 507
Release: 2011-06-21
Genre: Computers
ISBN: 1849513333

Today, scientific computing and data analysis play an integral part in most scientific disciplines ranging from mathematics and biology to imaging processing and finance. With GNU Octave you have a highly flexible tool that can solve a vast number of such different problems as complex statistical analysis and dynamical system studies. The GNU Octave Beginner's Guide gives you an introduction that enables you to solve and analyze complicated numerical problems. The book is based on numerous concrete examples and at the end of each chapter you will find exercises to test your knowledge. It's easy to learn GNU Octave, with the GNU Octave Beginner's Guide to hand. Using real-world examples the GNU Octave Beginner's Guide will take you through the most important aspects of GNU Octave. This practical guide takes you from the basics where you are introduced to the interpreter to a more advanced level where you will learn how to build your own specialized and highly optimized GNU Octave toolbox package. The book starts by introducing you to work variables like vectors and matrices, demonstrating how to perform simple arithmetic operations on these objects before explaining how to use some of the simple functionality that comes with GNU Octave, including plotting. It then goes on to show you how to write new functionality into GNU Octave and how to make a toolbox package to solve your specific problem. Finally, it demonstrates how to optimize your code and link GNU Octave with C and C++ code enabling you to solve even the most computationally demanding tasks. After reading GNU Octave Beginner's Guide you will be able to use and tailor GNU Octave to solve most numerical problems and perform complicated data analysis with ease.

Programming for Computations - Python

Programming for Computations - Python
Author: Svein Linge
Publisher: Springer
Total Pages: 244
Release: 2016-07-25
Genre: Computers
ISBN: 3319324284

This book presents computer programming as a key method for solving mathematical problems. There are two versions of the book, one for MATLAB and one for Python. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows the students to write simple programs for solving common mathematical problems with numerical methods in engineering and science courses. The emphasis is on generic algorithms, clean design of programs, use of functions, and automatic tests for verification.

The Mathematica GuideBook for Numerics

The Mathematica GuideBook for Numerics
Author: Michael Trott
Publisher: Springer Science & Business Media
Total Pages: 1243
Release: 2006-10-27
Genre: Computers
ISBN: 0387288147

Provides the reader with working knowledge of Mathematica and key aspects of Mathematica's numerical capabilities needed to deal with virtually any "real life" problem Clear organization, complete topic coverage, and an accessible writing style for both novices and experts Website for book with additional materials: http://www.MathematicaGuideBooks.org Accompanying DVD containing all materials as an electronic book with complete, executable Mathematica 5.1 compatible code and programs, rendered color graphics, and animations

Computational Recreations in Mathematica

Computational Recreations in Mathematica
Author: Ilan Vardi
Publisher: Addison-Wesley Professional
Total Pages: 308
Release: 1991
Genre: Computers
ISBN:

Presents some common problems in mathematics and how they can be investigated using the Mathematica computer system. Problems and exercises include the calendar, sequences, the n-Queens problems, digital computing, blackjack and computing pi. This book is for those that would like to see how Mathematica is applied to real-world mathematics.

Principles of Linear Algebra With Maple

Principles of Linear Algebra With Maple
Author: Kenneth M. Shiskowski
Publisher: Wiley
Total Pages: 0
Release: 2010-09-28
Genre: Mathematics
ISBN: 9780470637593

An accessible introduction to the theoretical and computational aspects of linear algebra using MapleTM Many topics in linear algebra can be computationally intensive, and software programs often serve as important tools for understanding challenging concepts and visualizing the geometric aspects of the subject. Principles of Linear Algebra with Maple uniquely addresses the quickly growing intersection between subject theory and numerical computation, providing all of the commands required to solve complex and computationally challenging linear algebra problems using Maple. The authors supply an informal, accessible, and easy-to-follow treatment of key topics often found in a first course in linear algebra. Requiring no prior knowledge of the software, the book begins with an introduction to the commands and programming guidelines for working with Maple. Next, the book explores linear systems of equations and matrices, applications of linear systems and matrices, determinants, inverses, and Cramer's rule. Basic linear algebra topics such as vectors, dot product, cross product, and vector projection are explained, as well as the more advanced topics of rotations in space, rolling a circle along a curve, and the TNB Frame. Subsequent chapters feature coverage of linear transformations from Rn to Rm, the geometry of linear and affine transformations, least squares fits and pseudoinverses, and eigenvalues and eigenvectors. The authors explore several topics that are not often found in introductory linear algebra books, including sensitivity to error and the effects of linear and affine maps on the geometry of objects. The Maple software highlights the topic's visual nature, as the book is complete with numerous graphics in two and three dimensions, animations, symbolic manipulations, numerical computations, and programming. In addition, a related Web site features supplemental material, including Maple code for each chapter's problems, solutions, and color versions of the book's figures. Extensively class-tested to ensure an accessible presentation, Principles of Linear Algebra with Maple is an excellent book for courses on linear algebra at the undergraduate level. It is also an ideal reference for students and professionals who would like to gain a further understanding of the use of Maple to solve linear algebra problems.