Making Computer Vision Computationally Efficient
Download Making Computer Vision Computationally Efficient full books in PDF, epub, and Kindle. Read online free Making Computer Vision Computationally Efficient ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Matt Pharr |
Publisher | : Addison-Wesley Professional |
Total Pages | : 814 |
Release | : 2005 |
Genre | : Computers |
ISBN | : 9780321335593 |
More useful techniques, tips, and tricks for harnessing the power of the new generation of powerful GPUs.
Author | : Chi Hau Chen |
Publisher | : World Scientific |
Total Pages | : 410 |
Release | : 2013-11-18 |
Genre | : Computers |
ISBN | : 9814460958 |
The major progress in computer vision allows us to make extensive use of medical imaging data to provide us better diagnosis, treatment and predication of diseases. Computer vision can exploit texture, shape, contour and prior knowledge along with contextual information from image sequence and provide 3D and 4D information that helps with better human understanding. Many powerful tools have been available through image segmentation, machine learning, pattern classification, tracking, reconstruction to bring much needed quantitative information not easily available by trained human specialists. The aim of the book is for both medical imaging professionals to acquire and interpret the data, and computer vision professionals to provide enhanced medical information by using computer vision techniques. The final objective is to benefit the patients without adding to the already high medical costs.
Author | : Chetan Arora |
Publisher | : Springer Nature |
Total Pages | : 138 |
Release | : 2019-11-14 |
Genre | : Computers |
ISBN | : 9811513872 |
This book constitutes the refereed proceedings of the third Workshop on Computer Vision Applications, WCVA 2018, held in Conjunction with ICVGIP 2018, in Hyderabad, India, in December 2018. The 10 revised full papers presented were carefully reviewed and selected from 32 submissions. The papers focus on computer vision; industrial applications; medical applications; and social applications.
Author | : Vivienne Sze |
Publisher | : Springer Nature |
Total Pages | : 254 |
Release | : 2022-05-31 |
Genre | : Technology & Engineering |
ISBN | : 3031017668 |
This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.
Author | : Aleksei Spizhevoi |
Publisher | : Packt Publishing Ltd |
Total Pages | : 296 |
Release | : 2018-03-23 |
Genre | : Computers |
ISBN | : 1788478754 |
OpenCV 3 is a native cross-platform library for computer vision, machine learning, and image processing. OpenCV's convenient high-level APIs hide very powerful internals designed for computational efficiency that can take advantage of multicore and GPU processing. This book will help you tackle increasingly challenging computer vision problems ...
Author | : Nicu Sebe |
Publisher | : Springer Science & Business Media |
Total Pages | : 253 |
Release | : 2005-10-04 |
Genre | : Computers |
ISBN | : 1402032757 |
The goal of this book is to address the use of several important machine learning techniques into computer vision applications. An innovative combination of computer vision and machine learning techniques has the promise of advancing the field of computer vision, which contributes to better understanding of complex real-world applications. The effective usage of machine learning technology in real-world computer vision problems requires understanding the domain of application, abstraction of a learning problem from a given computer vision task, and the selection of appropriate representations for the learnable (input) and learned (internal) entities of the system. In this book, we address all these important aspects from a new perspective: that the key element in the current computer revolution is the use of machine learning to capture the variations in visual appearance, rather than having the designer of the model accomplish this. As a bonus, models learned from large datasets are likely to be more robust and more realistic than the brittle all-design models.
Author | : V Kishore Ayyadevara |
Publisher | : Packt Publishing Ltd |
Total Pages | : 805 |
Release | : 2020-11-27 |
Genre | : Computers |
ISBN | : 1839216530 |
Get to grips with deep learning techniques for building image processing applications using PyTorch with the help of code notebooks and test questions Key FeaturesImplement solutions to 50 real-world computer vision applications using PyTorchUnderstand the theory and working mechanisms of neural network architectures and their implementationDiscover best practices using a custom library created especially for this bookBook Description Deep learning is the driving force behind many recent advances in various computer vision (CV) applications. This book takes a hands-on approach to help you to solve over 50 CV problems using PyTorch1.x on real-world datasets. You’ll start by building a neural network (NN) from scratch using NumPy and PyTorch and discover best practices for tweaking its hyperparameters. You’ll then perform image classification using convolutional neural networks and transfer learning and understand how they work. As you progress, you’ll implement multiple use cases of 2D and 3D multi-object detection, segmentation, human-pose-estimation by learning about the R-CNN family, SSD, YOLO, U-Net architectures, and the Detectron2 platform. The book will also guide you in performing facial expression swapping, generating new faces, and manipulating facial expressions as you explore autoencoders and modern generative adversarial networks. You’ll learn how to combine CV with NLP techniques, such as LSTM and transformer, and RL techniques, such as Deep Q-learning, to implement OCR, image captioning, object detection, and a self-driving car agent. Finally, you'll move your NN model to production on the AWS Cloud. By the end of this book, you’ll be able to leverage modern NN architectures to solve over 50 real-world CV problems confidently. What you will learnTrain a NN from scratch with NumPy and PyTorchImplement 2D and 3D multi-object detection and segmentationGenerate digits and DeepFakes with autoencoders and advanced GANsManipulate images using CycleGAN, Pix2PixGAN, StyleGAN2, and SRGANCombine CV with NLP to perform OCR, image captioning, and object detectionCombine CV with reinforcement learning to build agents that play pong and self-drive a carDeploy a deep learning model on the AWS server using FastAPI and DockerImplement over 35 NN architectures and common OpenCV utilitiesWho this book is for This book is for beginners to PyTorch and intermediate-level machine learning practitioners who are looking to get well-versed with computer vision techniques using deep learning and PyTorch. If you are just getting started with neural networks, you’ll find the use cases accompanied by notebooks in GitHub present in this book useful. Basic knowledge of the Python programming language and machine learning is all you need to get started with this book.
Author | : Jan Erik Solem |
Publisher | : "O'Reilly Media, Inc." |
Total Pages | : 262 |
Release | : 2012-06-19 |
Genre | : Computers |
ISBN | : 1449341934 |
If you want a basic understanding of computer vision’s underlying theory and algorithms, this hands-on introduction is the ideal place to start. You’ll learn techniques for object recognition, 3D reconstruction, stereo imaging, augmented reality, and other computer vision applications as you follow clear examples written in Python. Programming Computer Vision with Python explains computer vision in broad terms that won’t bog you down in theory. You get complete code samples with explanations on how to reproduce and build upon each example, along with exercises to help you apply what you’ve learned. This book is ideal for students, researchers, and enthusiasts with basic programming and standard mathematical skills. Learn techniques used in robot navigation, medical image analysis, and other computer vision applications Work with image mappings and transforms, such as texture warping and panorama creation Compute 3D reconstructions from several images of the same scene Organize images based on similarity or content, using clustering methods Build efficient image retrieval techniques to search for images based on visual content Use algorithms to classify image content and recognize objects Access the popular OpenCV library through a Python interface
Author | : Mahmoud Hassaballah |
Publisher | : CRC Press |
Total Pages | : 275 |
Release | : 2020-03-23 |
Genre | : Computers |
ISBN | : 1351003801 |
Deep learning algorithms have brought a revolution to the computer vision community by introducing non-traditional and efficient solutions to several image-related problems that had long remained unsolved or partially addressed. This book presents a collection of eleven chapters where each individual chapter explains the deep learning principles of a specific topic, introduces reviews of up-to-date techniques, and presents research findings to the computer vision community. The book covers a broad scope of topics in deep learning concepts and applications such as accelerating the convolutional neural network inference on field-programmable gate arrays, fire detection in surveillance applications, face recognition, action and activity recognition, semantic segmentation for autonomous driving, aerial imagery registration, robot vision, tumor detection, and skin lesion segmentation as well as skin melanoma classification. The content of this book has been organized such that each chapter can be read independently from the others. The book is a valuable companion for researchers, for postgraduate and possibly senior undergraduate students who are taking an advanced course in related topics, and for those who are interested in deep learning with applications in computer vision, image processing, and pattern recognition.
Author | : Susan Kahler |
Publisher | : |
Total Pages | : 112 |
Release | : 2020-07-22 |
Genre | : Computers |
ISBN | : 9781952365041 |
Computer vision is a field of artificial intelligence that trains computers to interpret and understand the visual world. In recent years, computer vision has begun to rival and even surpass human visual abilities in many areas. SAS offers many different solutions to train computers to "see" by identifying and classifying objects, and several groundbreaking papers have been written to demonstrate these techniques. The papers included in this special collection demonstrate how the latest computer vision tools and techniques can be used to solve a variety of business problems.