Machine Learning with Scala Quick Start Guide

Machine Learning with Scala Quick Start Guide
Author: Md. Rezaul Karim
Publisher: Packt Publishing Ltd
Total Pages: 215
Release: 2019-04-30
Genre: Mathematics
ISBN: 1789345413

Supervised and unsupervised machine learning made easy in Scala with this quick-start guide. Key FeaturesConstruct and deploy machine learning systems that learn from your data and give accurate predictionsUnleash the power of Spark ML along with popular machine learning algorithms to solve complex tasks in Scala.Solve hands-on problems by combining popular neural network architectures such as LSTM and CNN using Scala with DeepLearning4j libraryBook Description Scala is a highly scalable integration of object-oriented nature and functional programming concepts that make it easy to build scalable and complex big data applications. This book is a handy guide for machine learning developers and data scientists who want to develop and train effective machine learning models in Scala. The book starts with an introduction to machine learning, while covering deep learning and machine learning basics. It then explains how to use Scala-based ML libraries to solve classification and regression problems using linear regression, generalized linear regression, logistic regression, support vector machine, and Naïve Bayes algorithms. It also covers tree-based ensemble techniques for solving both classification and regression problems. Moving ahead, it covers unsupervised learning techniques, such as dimensionality reduction, clustering, and recommender systems. Finally, it provides a brief overview of deep learning using a real-life example in Scala. What you will learnGet acquainted with JVM-based machine learning libraries for Scala such as Spark ML and Deeplearning4jLearn RDDs, DataFrame, and Spark SQL for analyzing structured and unstructured dataUnderstand supervised and unsupervised learning techniques with best practices and pitfallsLearn classification and regression analysis with linear regression, logistic regression, Naïve Bayes, support vector machine, and tree-based ensemble techniques Learn effective ways of clustering analysis with dimensionality reduction techniquesLearn recommender systems with collaborative filtering approachDelve into deep learning and neural network architecturesWho this book is for This book is for machine learning developers looking to train machine learning models in Scala without spending too much time and effort. Some fundamental knowledge of Scala programming and some basics of statistics and linear algebra is all you need to get started with this book.

Machine Learning with Apache Spark Quick Start Guide

Machine Learning with Apache Spark Quick Start Guide
Author: Jillur Quddus
Publisher: Packt Publishing Ltd
Total Pages: 233
Release: 2018-12-26
Genre: Computers
ISBN: 1789349370

Combine advanced analytics including Machine Learning, Deep Learning Neural Networks and Natural Language Processing with modern scalable technologies including Apache Spark to derive actionable insights from Big Data in real-time Key FeaturesMake a hands-on start in the fields of Big Data, Distributed Technologies and Machine LearningLearn how to design, develop and interpret the results of common Machine Learning algorithmsUncover hidden patterns in your data in order to derive real actionable insights and business valueBook Description Every person and every organization in the world manages data, whether they realize it or not. Data is used to describe the world around us and can be used for almost any purpose, from analyzing consumer habits to fighting disease and serious organized crime. Ultimately, we manage data in order to derive value from it, and many organizations around the world have traditionally invested in technology to help process their data faster and more efficiently. But we now live in an interconnected world driven by mass data creation and consumption where data is no longer rows and columns restricted to a spreadsheet, but an organic and evolving asset in its own right. With this realization comes major challenges for organizations: how do we manage the sheer size of data being created every second (think not only spreadsheets and databases, but also social media posts, images, videos, music, blogs and so on)? And once we can manage all of this data, how do we derive real value from it? The focus of Machine Learning with Apache Spark is to help us answer these questions in a hands-on manner. We introduce the latest scalable technologies to help us manage and process big data. We then introduce advanced analytical algorithms applied to real-world use cases in order to uncover patterns, derive actionable insights, and learn from this big data. What you will learnUnderstand how Spark fits in the context of the big data ecosystemUnderstand how to deploy and configure a local development environment using Apache SparkUnderstand how to design supervised and unsupervised learning modelsBuild models to perform NLP, deep learning, and cognitive services using Spark ML librariesDesign real-time machine learning pipelines in Apache SparkBecome familiar with advanced techniques for processing a large volume of data by applying machine learning algorithmsWho this book is for This book is aimed at Business Analysts, Data Analysts and Data Scientists who wish to make a hands-on start in order to take advantage of modern Big Data technologies combined with Advanced Analytics.

Scala for Machine Learning

Scala for Machine Learning
Author: Patrick R. Nicolas
Publisher: Packt Publishing Ltd
Total Pages: 740
Release: 2017-09-26
Genre: Computers
ISBN: 178712620X

Leverage Scala and Machine Learning to study and construct systems that can learn from data About This Book Explore a broad variety of data processing, machine learning, and genetic algorithms through diagrams, mathematical formulation, and updated source code in Scala Take your expertise in Scala programming to the next level by creating and customizing AI applications Experiment with different techniques and evaluate their benefits and limitations using real-world applications in a tutorial style Who This Book Is For If you're a data scientist or a data analyst with a fundamental knowledge of Scala who wants to learn and implement various Machine learning techniques, this book is for you. All you need is a good understanding of the Scala programming language, a basic knowledge of statistics, a keen interest in Big Data processing, and this book! What You Will Learn Build dynamic workflows for scientific computing Leverage open source libraries to extract patterns from time series Write your own classification, clustering, or evolutionary algorithm Perform relative performance tuning and evaluation of Spark Master probabilistic models for sequential data Experiment with advanced techniques such as regularization and kernelization Dive into neural networks and some deep learning architecture Apply some basic multiarm-bandit algorithms Solve big data problems with Scala parallel collections, Akka actors, and Apache Spark clusters Apply key learning strategies to a technical analysis of financial markets In Detail The discovery of information through data clustering and classification is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, engineering design, logistics, manufacturing, and trading strategies, to detection of genetic anomalies. The book is your one stop guide that introduces you to the functional capabilities of the Scala programming language that are critical to the creation of machine learning algorithms such as dependency injection and implicits. You start by learning data preprocessing and filtering techniques. Following this, you'll move on to unsupervised learning techniques such as clustering and dimension reduction, followed by probabilistic graphical models such as Naive Bayes, hidden Markov models and Monte Carlo inference. Further, it covers the discriminative algorithms such as linear, logistic regression with regularization, kernelization, support vector machines, neural networks, and deep learning. You'll move on to evolutionary computing, multibandit algorithms, and reinforcement learning. Finally, the book includes a comprehensive overview of parallel computing in Scala and Akka followed by a description of Apache Spark and its ML library. With updated codes based on the latest version of Scala and comprehensive examples, this book will ensure that you have more than just a solid fundamental knowledge in machine learning with Scala. Style and approach This book is designed as a tutorial with hands-on exercises using technical analysis of financial markets and corporate data. The approach of each chapter is such that it allows you to understand key concepts easily.

Spark: The Definitive Guide

Spark: The Definitive Guide
Author: Bill Chambers
Publisher: "O'Reilly Media, Inc."
Total Pages: 594
Release: 2018-02-08
Genre: Computers
ISBN: 1491912294

Learn how to use, deploy, and maintain Apache Spark with this comprehensive guide, written by the creators of the open-source cluster-computing framework. With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sections, each with unique goals. Youâ??ll explore the basic operations and common functions of Sparkâ??s structured APIs, as well as Structured Streaming, a new high-level API for building end-to-end streaming applications. Developers and system administrators will learn the fundamentals of monitoring, tuning, and debugging Spark, and explore machine learning techniques and scenarios for employing MLlib, Sparkâ??s scalable machine-learning library. Get a gentle overview of big data and Spark Learn about DataFrames, SQL, and Datasetsâ??Sparkâ??s core APIsâ??through worked examples Dive into Sparkâ??s low-level APIs, RDDs, and execution of SQL and DataFrames Understand how Spark runs on a cluster Debug, monitor, and tune Spark clusters and applications Learn the power of Structured Streaming, Sparkâ??s stream-processing engine Learn how you can apply MLlib to a variety of problems, including classification or recommendation

Scala and Spark for Big Data Analytics

Scala and Spark for Big Data Analytics
Author: Md. Rezaul Karim
Publisher: Packt Publishing Ltd
Total Pages: 786
Release: 2017-07-25
Genre: Computers
ISBN: 1783550503

Harness the power of Scala to program Spark and analyze tonnes of data in the blink of an eye! About This Book Learn Scala's sophisticated type system that combines Functional Programming and object-oriented concepts Work on a wide array of applications, from simple batch jobs to stream processing and machine learning Explore the most common as well as some complex use-cases to perform large-scale data analysis with Spark Who This Book Is For Anyone who wishes to learn how to perform data analysis by harnessing the power of Spark will find this book extremely useful. No knowledge of Spark or Scala is assumed, although prior programming experience (especially with other JVM languages) will be useful to pick up concepts quicker. What You Will Learn Understand object-oriented & functional programming concepts of Scala In-depth understanding of Scala collection APIs Work with RDD and DataFrame to learn Spark's core abstractions Analysing structured and unstructured data using SparkSQL and GraphX Scalable and fault-tolerant streaming application development using Spark structured streaming Learn machine-learning best practices for classification, regression, dimensionality reduction, and recommendation system to build predictive models with widely used algorithms in Spark MLlib & ML Build clustering models to cluster a vast amount of data Understand tuning, debugging, and monitoring Spark applications Deploy Spark applications on real clusters in Standalone, Mesos, and YARN In Detail Scala has been observing wide adoption over the past few years, especially in the field of data science and analytics. Spark, built on Scala, has gained a lot of recognition and is being used widely in productions. Thus, if you want to leverage the power of Scala and Spark to make sense of big data, this book is for you. The first part introduces you to Scala, helping you understand the object-oriented and functional programming concepts needed for Spark application development. It then moves on to Spark to cover the basic abstractions using RDD and DataFrame. This will help you develop scalable and fault-tolerant streaming applications by analyzing structured and unstructured data using SparkSQL, GraphX, and Spark structured streaming. Finally, the book moves on to some advanced topics, such as monitoring, configuration, debugging, testing, and deployment. You will also learn how to develop Spark applications using SparkR and PySpark APIs, interactive data analytics using Zeppelin, and in-memory data processing with Alluxio. By the end of this book, you will have a thorough understanding of Spark, and you will be able to perform full-stack data analytics with a feel that no amount of data is too big. Style and approach Filled with practical examples and use cases, this book will hot only help you get up and running with Spark, but will also take you farther down the road to becoming a data scientist.

Hands-On Data Analysis with Scala

Hands-On Data Analysis with Scala
Author: Rajesh Gupta
Publisher: Packt Publishing Ltd
Total Pages: 288
Release: 2019-05-03
Genre: Computers
ISBN: 1789344263

Master scala's advanced techniques to solve real-world problems in data analysis and gain valuable insights from your data Key FeaturesA beginner's guide for performing data analysis loaded with numerous rich, practical examplesAccess to popular Scala libraries such as Breeze, Saddle for efficient data manipulation and exploratory analysisDevelop applications in Scala for real-time analysis and machine learning in Apache SparkBook Description Efficient business decisions with an accurate sense of business data helps in delivering better performance across products and services. This book helps you to leverage the popular Scala libraries and tools for performing core data analysis tasks with ease. The book begins with a quick overview of the building blocks of a standard data analysis process. You will learn to perform basic tasks like Extraction, Staging, Validation, Cleaning, and Shaping of datasets. You will later deep dive into the data exploration and visualization areas of the data analysis life cycle. You will make use of popular Scala libraries like Saddle, Breeze, Vegas, and PredictionIO for processing your datasets. You will learn statistical methods for deriving meaningful insights from data. You will also learn to create applications for Apache Spark 2.x on complex data analysis, in real-time. You will discover traditional machine learning techniques for doing data analysis. Furthermore, you will also be introduced to neural networks and deep learning from a data analysis standpoint. By the end of this book, you will be capable of handling large sets of structured and unstructured data, perform exploratory analysis, and building efficient Scala applications for discovering and delivering insights What you will learnTechniques to determine the validity and confidence level of dataApply quartiles and n-tiles to datasets to see how data is distributed into many bucketsCreate data pipelines that combine multiple data lifecycle stepsUse built-in features to gain a deeper understanding of the dataApply Lasso regression analysis method to your dataCompare Apache Spark API with traditional Apache Spark data analysisWho this book is for If you are a data scientist or a data analyst who wants to learn how to perform data analysis using Scala, this book is for you. All you need is knowledge of the basic fundamentals of Scala programming.

Scala for Machine Learning, Second Edition

Scala for Machine Learning, Second Edition
Author: Patrick R. Nicolas
Publisher: Packt Publishing
Total Pages: 740
Release: 2017-09-26
Genre: Computers
ISBN: 9781787122383

Leverage Scala and Machine Learning to study and construct systems that can learn from dataAbout This Book* Explore a broad variety of data processing, machine learning, and genetic algorithms through diagrams, mathematical formulation, and updated source code in Scala* Take your expertise in Scala programming to the next level by creating and customizing AI applications* Experiment with different techniques and evaluate their benefits and limitations using real-world applications in a tutorial styleWho This Book Is ForIf you're a data scientist or a data analyst with a fundamental knowledge of Scala who wants to learn and implement various Machine learning techniques, this book is for you. All you need is a good understanding of the Scala programming language, a basic knowledge of statistics, a keen interest in Big Data processing, and this book!What You Will Learn* Build dynamic workflows for scientific computing* Leverage open source libraries to extract patterns from time series* Write your own classification, clustering, or evolutionary algorithm* Perform relative performance tuning and evaluation of Spark* Master probabilistic models for sequential data* Experiment with advanced techniques such as regularization and kernelization* Dive into neural networks and some deep learning architecture* Apply some basic multiarm-bandit algorithms* Solve big data problems with Scala parallel collections, Akka actors, and Apache Spark clusters* Apply key learning strategies to a technical analysis of financial marketsIn DetailThe discovery of information through data clustering and classification is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, engineering design, logistics, manufacturing, and trading strategies, to detection of genetic anomalies.The book is your one stop guide that introduces you to the functional capabilities of the Scala programming language that are critical to the creation of machine learning algorithms such as dependency injection and implicits. You start by learning data preprocessing and filtering techniques. Following this, you'll move on to unsupervised learning techniques such as clustering and dimension reduction, followed by probabilistic graphical models such as Naive Bayes, hidden Markov models and Monte Carlo inference. Further, it covers the discriminative algorithms such as linear, logistic regression with regularization, kernelization, support vector machines, neural networks, and deep learning. You'll move on to evolutionary computing, multibandit algorithms, and reinforcement learning.Finally, the book includes a comprehensive overview of parallel computing in Scala and Akka followed by a description of Apache Spark and its ML library. With updated codes based on the latest version of Scala and comprehensive examples, this book will ensure that you have more than just a solid fundamental knowledge in machine learning with Scala.Style and approachThis book is designed as a tutorial with hands-on exercises using technical analysis of financial markets and corporate data. The approach of each chapter is such that it allows you to understand key concepts easily.

Learning Spark

Learning Spark
Author: Jules S. Damji
Publisher: O'Reilly Media
Total Pages: 400
Release: 2020-07-16
Genre: Computers
ISBN: 1492050016

Data is bigger, arrives faster, and comes in a variety of formats—and it all needs to be processed at scale for analytics or machine learning. But how can you process such varied workloads efficiently? Enter Apache Spark. Updated to include Spark 3.0, this second edition shows data engineers and data scientists why structure and unification in Spark matters. Specifically, this book explains how to perform simple and complex data analytics and employ machine learning algorithms. Through step-by-step walk-throughs, code snippets, and notebooks, you’ll be able to: Learn Python, SQL, Scala, or Java high-level Structured APIs Understand Spark operations and SQL Engine Inspect, tune, and debug Spark operations with Spark configurations and Spark UI Connect to data sources: JSON, Parquet, CSV, Avro, ORC, Hive, S3, or Kafka Perform analytics on batch and streaming data using Structured Streaming Build reliable data pipelines with open source Delta Lake and Spark Develop machine learning pipelines with MLlib and productionize models using MLflow

Scala Machine Learning Projects

Scala Machine Learning Projects
Author: Rezaul Karim
Publisher: Packt Publishing
Total Pages: 470
Release: 2018-01-31
Genre: Computers
ISBN: 9781788479042

Powerful smart applications using deep learning algorithms to dominate numerical computing, deep learning, and functional programming. Key Features Explore machine learning techniques with prominent open source Scala libraries such as Spark ML, H2O, MXNet, Zeppelin, and DeepLearning4j Solve real-world machine learning problems by delving complex numerical computing with Scala functional programming in a scalable and faster way Cover all key aspects such as collection, storing, processing, analyzing, and evaluation required to build and deploy machine models on computing clusters using Scala Play framework. Book Description Machine learning has had a huge impact on academia and industry by turning data into actionable information. Scala has seen a steady rise in adoption over the past few years, especially in the fields of data science and analytics. This book is for data scientists, data engineers, and deep learning enthusiasts who have a background in complex numerical computing and want to know more hands-on machine learning application development. If you're well versed in machine learning concepts and want to expand your knowledge by delving into the practical implementation of these concepts using the power of Scala, then this book is what you need! Through 11 end-to-end projects, you will be acquainted with popular machine learning libraries such as Spark ML, H2O, DeepLearning4j, and MXNet. At the end, you will be able to use numerical computing and functional programming to carry out complex numerical tasks to develop, build, and deploy research or commercial projects in a production-ready environment. What you will learn Apply advanced regression techniques to boost the performance of predictive models Use different classification algorithms for business analytics Generate trading strategies for Bitcoin and stock trading using ensemble techniques Train Deep Neural Networks (DNN) using H2O and Spark ML Utilize NLP to build scalable machine learning models Learn how to apply reinforcement learning algorithms such as Q-learning for developing ML application Learn how to use autoencoders to develop a fraud detection application Implement LSTM and CNN models using DeepLearning4j and MXNet Who this book is for If you want to leverage the power of both Scala and Spark to make sense of Big Data, then this book is for you. If you are well versed with machine learning concepts and wants to expand your knowledge by delving into the practical implementation using the power of Scala, then this book is what you need! Strong understanding of Scala Programming language is recommended. Basic familiarity with machine Learning techniques will be more helpful.

Learning Scala

Learning Scala
Author: Jason Swartz
Publisher: "O'Reilly Media, Inc."
Total Pages: 255
Release: 2014-12-11
Genre: Computers
ISBN: 1449368840

Why learn Scala? You don’t need to be a data scientist or distributed computing expert to appreciate this object-oriented functional programming language. This practical book provides a comprehensive yet approachable introduction to the language, complete with syntax diagrams, examples, and exercises. You’ll start with Scala's core types and syntax before diving into higher-order functions and immutable data structures. Author Jason Swartz demonstrates why Scala’s concise and expressive syntax make it an ideal language for Ruby or Python developers who want to improve their craft, while its type safety and performance ensures that it’s stable and fast enough for any application. Learn about the core data types, literals, values, and variables Discover how to think and write in expressions, the foundation for Scala's syntax Write higher-order functions that accept or return other functions Become familiar with immutable data structures and easily transform them with type-safe and declarative operations Create custom infix operators to simplify existing operations or even to start your own domain-specific language Build classes that compose one or more traits for full reusability, or create new functionality by mixing them in at instantiation