Machine Learning With Rust
Download Machine Learning With Rust full books in PDF, epub, and Kindle. Read online free Machine Learning With Rust ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Joydeep Bhattacharjee |
Publisher | : Apress |
Total Pages | : 362 |
Release | : 2019-12-10 |
Genre | : Computers |
ISBN | : 1484251210 |
Explore machine learning in Rust and learn about the intricacies of creating machine learning applications. This book begins by covering the important concepts of machine learning such as supervised, unsupervised, and reinforcement learning, and the basics of Rust. Further, you’ll dive into the more specific fields of machine learning, such as computer vision and natural language processing, and look at the Rust libraries that help create applications for those domains. We will also look at how to deploy these applications either on site or over the cloud. After reading Practical Machine Learning with Rust, you will have a solid understanding of creating high computation libraries using Rust. Armed with the knowledge of this amazing language, you will be able to create applications that are more performant, memory safe, and less resource heavy. What You Will Learn Write machine learning algorithms in RustUse Rust libraries for different tasks in machine learningCreate concise Rust packages for your machine learning applicationsImplement NLP and computer vision in RustDeploy your code in the cloud and on bare metal servers Who This Book Is For Machine learning engineers and software engineers interested in building machine learning applications in Rust.
Author | : Shing Lyu |
Publisher | : Apress |
Total Pages | : 265 |
Release | : 2020-02-27 |
Genre | : Computers |
ISBN | : 1484255992 |
Go beyond the basics and build complete applications using the Rust programming language. The applications in this book include a high-performance web client, a microcontroller (for a robot, for example), a game, an app that runs on Android, and an application that incorporates AI and machine learning. Each chapter will be organized in the following format: what this kind of application looks like; requirements and user stories of our example program; an introduction to the Rust libraries used; the actual implementation of the example program, including common pitfalls and their solutions; and a brief comparison of libraries for building each application, if there is no clear winner. Practical Rust Projects will open your eyes to the world of practical applications of Rust. After reading the book, you will be able to apply your Rust knowledge to build your own projects. What You Will Learn Write Rust code that runs on microcontrollers Build a 2D game Create Rust-based mobile Android applications Use Rust to build AI and machine learning applications Who This Book Is For Someone with basic Rust knowledge, wishing to learn more about how to apply Rust in a real-world scenario.
Author | : Keiko Nakamura |
Publisher | : GitforGits |
Total Pages | : 170 |
Release | : 2024-01-31 |
Genre | : Computers |
ISBN | : 8119177711 |
In this stimulating journey of Rust, you'll learn how to use the Rust programming language in conjunction with machine learning. It's not a full guide to learning machine learning with Rust. Instead, it's more of a journey that shows you what's possible when you use Rust to solve machine learning problems. Some people like Rust because it is quick and safe. This book shows how those qualities can help machine learning a lot. To begin, we will show you what Rust is and how it works. This is so that everyone, even those who are new to Rust, can follow along. Then, we look at some basic machine learning concepts, such as linear and logistic regression, and show how to use Rust's tools and libraries to make these ideas work. You will learn more complex techniques like decision trees, support vector machines, and how to work with data as we go along. It goes all the way up to neural networks and image recognition, and we show you how to use Rust for these types of tasks step by step. We use real-world examples, such as COVID data and the CIFAR-10 image set, to show how Rust works with issues that come up in the real world. This book is all about discovery and experimentation. To see what you can do with them, we use various Rust tools for machine learning. It's a fun way to see how Rust can be used in machine learning, and it will make you want to try new things and learn more on your own. This is only the beginning; there is so much more to uncover as you continue to explore machine learning with Rust. Key Learnings Exploit Rust's efficiency and safety to construct fast machine learning models. Use Rust's ndarray crate for numerical computations to manipulate complex machine learning data. Find out how Rust's extensible machine learning framework, linfa, works across algorithms. Use Rust's precision and speed to construct linear and logistic regression. See how Rust crates simplify decision trees and random forests for prediction and categorization. Learn to implement and optimize probabilistic classifiers, SVMs and closest neighbor methods in Rust. Use Rust's computing power to study neural networks and CNNs for picture recognition and processing. Apply learnt strategies to COVID and CIFAR-10 datasets to address realistic problems and obtain insights. Table of Content Rust Basics for Machine Learning Data Wrangling with Rust Linear Regression by Example Logistic Regression for Classification Decision Trees in Action Mastering Random Forests Support Vector Machines in Action Simplifying Naive Bayes and k-NN Crafting Neural Networks with Rust
Author | : Sebastian Raschka |
Publisher | : Packt Publishing Ltd |
Total Pages | : 455 |
Release | : 2015-09-23 |
Genre | : Computers |
ISBN | : 1783555149 |
Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics About This Book Leverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualization Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets Who This Book Is For If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource. What You Will Learn Explore how to use different machine learning models to ask different questions of your data Learn how to build neural networks using Keras and Theano Find out how to write clean and elegant Python code that will optimize the strength of your algorithms Discover how to embed your machine learning model in a web application for increased accessibility Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Organize data using effective pre-processing techniques Get to grips with sentiment analysis to delve deeper into textual and social media data In Detail Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization. Style and approach Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models.
Author | : Steve Klabnik |
Publisher | : No Starch Press |
Total Pages | : 561 |
Release | : 2019-09-03 |
Genre | : Computers |
ISBN | : 1718500459 |
The official book on the Rust programming language, written by the Rust development team at the Mozilla Foundation, fully updated for Rust 2018. The Rust Programming Language is the official book on Rust: an open source systems programming language that helps you write faster, more reliable software. Rust offers control over low-level details (such as memory usage) in combination with high-level ergonomics, eliminating the hassle traditionally associated with low-level languages. The authors of The Rust Programming Language, members of the Rust Core Team, share their knowledge and experience to show you how to take full advantage of Rust's features--from installation to creating robust and scalable programs. You'll begin with basics like creating functions, choosing data types, and binding variables and then move on to more advanced concepts, such as: Ownership and borrowing, lifetimes, and traits Using Rust's memory safety guarantees to build fast, safe programs Testing, error handling, and effective refactoring Generics, smart pointers, multithreading, trait objects, and advanced pattern matching Using Cargo, Rust's built-in package manager, to build, test, and document your code and manage dependencies How best to use Rust's advanced compiler with compiler-led programming techniques You'll find plenty of code examples throughout the book, as well as three chapters dedicated to building complete projects to test your learning: a number guessing game, a Rust implementation of a command line tool, and a multithreaded server. New to this edition: An extended section on Rust macros, an expanded chapter on modules, and appendixes on Rust development tools and editions.
Author | : Tim McNamara |
Publisher | : Simon and Schuster |
Total Pages | : 454 |
Release | : 2021-09-07 |
Genre | : Computers |
ISBN | : 163835622X |
"This well-written book will help you make the most of what Rust has to offer." - Ramnivas Laddad, author of AspectJ in Action Rust in Action is a hands-on guide to systems programming with Rust. Written for inquisitive programmers, it presents real-world use cases that go far beyond syntax and structure. Summary Rust in Action introduces the Rust programming language by exploring numerous systems programming concepts and techniques. You'll be learning Rust by delving into how computers work under the hood. You'll find yourself playing with persistent storage, memory, networking and even tinkering with CPU instructions. The book takes you through using Rust to extend other applications and teaches you tricks to write blindingly fast code. You'll also discover parallel and concurrent programming. Filled to the brim with real-life use cases and scenarios, you'll go beyond the Rust syntax and see what Rust has to offer in real-world use cases. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Rust is the perfect language for systems programming. It delivers the low-level power of C along with rock-solid safety features that let you code fearlessly. Ideal for applications requiring concurrency, Rust programs are compact, readable, and blazingly fast. Best of all, Rust’s famously smart compiler helps you avoid even subtle coding errors. About the book Rust in Action is a hands-on guide to systems programming with Rust. Written for inquisitive programmers, it presents real-world use cases that go far beyond syntax and structure. You’ll explore Rust implementations for file manipulation, networking, and kernel-level programming and discover awesome techniques for parallelism and concurrency. Along the way, you’ll master Rust’s unique borrow checker model for memory management without a garbage collector. What's inside Elementary to advanced Rust programming Practical examples from systems programming Command-line, graphical and networked applications About the reader For intermediate programmers. No previous experience with Rust required. About the author Tim McNamara uses Rust to build data processing pipelines and generative art. He is an expert in natural language processing and data engineering. Table of Contents 1 Introducing Rust PART 1 RUST LANGUAGE DISTINCTIVES 2 Language foundations 3 Compound data types 4 Lifetimes, ownership, and borrowing PART 2 DEMYSTIFYING SYSTEMS PROGRAMMING 5 Data in depth 6 Memory 7 Files and storage 8 Networking 9 Time and timekeeping 10 Processes, threads, and containers 11 Kernel 12 Signals, interrupts, and exceptions
Author | : Brad Boehmke |
Publisher | : CRC Press |
Total Pages | : 373 |
Release | : 2019-11-07 |
Genre | : Business & Economics |
ISBN | : 1000730433 |
Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data.
Author | : Norman Matloff |
Publisher | : No Starch Press |
Total Pages | : 271 |
Release | : 2024-01-09 |
Genre | : Computers |
ISBN | : 1718502109 |
Learn to expertly apply a range of machine learning methods to real data with this practical guide. Packed with real datasets and practical examples, The Art of Machine Learning will help you develop an intuitive understanding of how and why ML methods work, without the need for advanced math. As you work through the book, you’ll learn how to implement a range of powerful ML techniques, starting with the k-Nearest Neighbors (k-NN) method and random forests, and moving on to gradient boosting, support vector machines (SVMs), neural networks, and more. With the aid of real datasets, you’ll delve into regression models through the use of a bike-sharing dataset, explore decision trees by leveraging New York City taxi data, and dissect parametric methods with baseball player stats. You’ll also find expert tips for avoiding common problems, like handling “dirty” or unbalanced data, and how to troubleshoot pitfalls. You’ll also explore: How to deal with large datasets and techniques for dimension reduction Details on how the Bias-Variance Trade-off plays out in specific ML methods Models based on linear relationships, including ridge and LASSO regression Real-world image and text classification and how to handle time series data Machine learning is an art that requires careful tuning and tweaking. With The Art of Machine Learning as your guide, you’ll master the underlying principles of ML that will empower you to effectively use these models, rather than simply provide a few stock actions with limited practical use. Requirements: A basic understanding of graphs and charts and familiarity with the R programming language
Author | : Andrew W. Trask |
Publisher | : Simon and Schuster |
Total Pages | : 475 |
Release | : 2019-01-23 |
Genre | : Computers |
ISBN | : 163835720X |
Summary Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Deep learning, a branch of artificial intelligence, teaches computers to learn by using neural networks, technology inspired by the human brain. Online text translation, self-driving cars, personalized product recommendations, and virtual voice assistants are just a few of the exciting modern advancements possible thanks to deep learning. About the Book Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Using only Python and its math-supporting library, NumPy, you'll train your own neural networks to see and understand images, translate text into different languages, and even write like Shakespeare! When you're done, you'll be fully prepared to move on to mastering deep learning frameworks. What's inside The science behind deep learning Building and training your own neural networks Privacy concepts, including federated learning Tips for continuing your pursuit of deep learning About the Reader For readers with high school-level math and intermediate programming skills. About the Author Andrew Trask is a PhD student at Oxford University and a research scientist at DeepMind. Previously, Andrew was a researcher and analytics product manager at Digital Reasoning, where he trained the world's largest artificial neural network and helped guide the analytics roadmap for the Synthesys cognitive computing platform. Table of Contents Introducing deep learning: why you should learn it Fundamental concepts: how do machines learn? Introduction to neural prediction: forward propagation Introduction to neural learning: gradient descent Learning multiple weights at a time: generalizing gradient descent Building your first deep neural network: introduction to backpropagation How to picture neural networks: in your head and on paper Learning signal and ignoring noise:introduction to regularization and batching Modeling probabilities and nonlinearities: activation functions Neural learning about edges and corners: intro to convolutional neural networks Neural networks that understand language: king - man + woman == ? Neural networks that write like Shakespeare: recurrent layers for variable-length data Introducing automatic optimization: let's build a deep learning framework Learning to write like Shakespeare: long short-term memory Deep learning on unseen data: introducing federated learning Where to go from here: a brief guide
Author | : Jim Blandy |
Publisher | : "O'Reilly Media, Inc." |
Total Pages | : 646 |
Release | : 2017-11-21 |
Genre | : Computers |
ISBN | : 1491927232 |
Rust is a new systems programming language that combines the performance and low-level control of C and C++ with memory safety and thread safety. Rust’s modern, flexible types ensure your program is free of null pointer dereferences, double frees, dangling pointers, and similar bugs, all at compile time, without runtime overhead. In multi-threaded code, Rust catches data races at compile time, making concurrency much easier to use. Written by two experienced systems programmers, this book explains how Rust manages to bridge the gap between performance and safety, and how you can take advantage of it. Topics include: How Rust represents values in memory (with diagrams) Complete explanations of ownership, moves, borrows, and lifetimes Cargo, rustdoc, unit tests, and how to publish your code on crates.io, Rust’s public package repository High-level features like generic code, closures, collections, and iterators that make Rust productive and flexible Concurrency in Rust: threads, mutexes, channels, and atomics, all much safer to use than in C or C++ Unsafe code, and how to preserve the integrity of ordinary code that uses it Extended examples illustrating how pieces of the language fit together