Machine Learning Using TensorFlow Cookbook

Machine Learning Using TensorFlow Cookbook
Author: Alexia Audevart
Publisher: Packt Publishing Ltd
Total Pages: 417
Release: 2021-02-08
Genre: Mathematics
ISBN: 1800206887

Comprehensive recipes to give you valuable insights on Transformers, Reinforcement Learning, and more Key FeaturesDeep Learning solutions from Kaggle Masters and Google Developer ExpertsGet to grips with the fundamentals including variables, matrices, and data sourcesLearn advanced techniques to make your algorithms faster and more accurateBook Description The independent recipes in Machine Learning Using TensorFlow Cookbook will teach you how to perform complex data computations and gain valuable insights into your data. Dive into recipes on training models, model evaluation, sentiment analysis, regression analysis, artificial neural networks, and deep learning - each using Google’s machine learning library, TensorFlow. This cookbook covers the fundamentals of the TensorFlow library, including variables, matrices, and various data sources. You’ll discover real-world implementations of Keras and TensorFlow and learn how to use estimators to train linear models and boosted trees, both for classification and regression. Explore the practical applications of a variety of deep learning architectures, such as recurrent neural networks and Transformers, and see how they can be used to solve computer vision and natural language processing (NLP) problems. With the help of this book, you will be proficient in using TensorFlow, understand deep learning from the basics, and be able to implement machine learning algorithms in real-world scenarios. What you will learnTake TensorFlow into productionImplement and fine-tune Transformer models for various NLP tasksApply reinforcement learning algorithms using the TF-Agents frameworkUnderstand linear regression techniques and use Estimators to train linear modelsExecute neural networks and improve predictions on tabular dataMaster convolutional neural networks and recurrent neural networks through practical recipesWho this book is for If you are a data scientist or a machine learning engineer, and you want to skip detailed theoretical explanations in favor of building production-ready machine learning models using TensorFlow, this book is for you. Basic familiarity with Python, linear algebra, statistics, and machine learning is necessary to make the most out of this book.

TensorFlow 2 Reinforcement Learning Cookbook

TensorFlow 2 Reinforcement Learning Cookbook
Author: Praveen Palanisamy
Publisher: Packt Publishing Ltd
Total Pages: 473
Release: 2021-01-15
Genre: Computers
ISBN: 1838985999

Discover recipes for developing AI applications to solve a variety of real-world business problems using reinforcement learning Key FeaturesDevelop and deploy deep reinforcement learning-based solutions to production pipelines, products, and servicesExplore popular reinforcement learning algorithms such as Q-learning, SARSA, and the actor-critic methodCustomize and build RL-based applications for performing real-world tasksBook Description With deep reinforcement learning, you can build intelligent agents, products, and services that can go beyond computer vision or perception to perform actions. TensorFlow 2.x is the latest major release of the most popular deep learning framework used to develop and train deep neural networks (DNNs). This book contains easy-to-follow recipes for leveraging TensorFlow 2.x to develop artificial intelligence applications. Starting with an introduction to the fundamentals of deep reinforcement learning and TensorFlow 2.x, the book covers OpenAI Gym, model-based RL, model-free RL, and how to develop basic agents. You'll discover how to implement advanced deep reinforcement learning algorithms such as actor-critic, deep deterministic policy gradients, deep-Q networks, proximal policy optimization, and deep recurrent Q-networks for training your RL agents. As you advance, you’ll explore the applications of reinforcement learning by building cryptocurrency trading agents, stock/share trading agents, and intelligent agents for automating task completion. Finally, you'll find out how to deploy deep reinforcement learning agents to the cloud and build cross-platform apps using TensorFlow 2.x. By the end of this TensorFlow book, you'll have gained a solid understanding of deep reinforcement learning algorithms and their implementations from scratch. What you will learnBuild deep reinforcement learning agents from scratch using the all-new TensorFlow 2.x and Keras APIImplement state-of-the-art deep reinforcement learning algorithms using minimal codeBuild, train, and package deep RL agents for cryptocurrency and stock tradingDeploy RL agents to the cloud and edge to test them by creating desktop, web, and mobile apps and cloud servicesSpeed up agent development using distributed DNN model trainingExplore distributed deep RL architectures and discover opportunities in AIaaS (AI as a Service)Who this book is for The book is for machine learning application developers, AI and applied AI researchers, data scientists, deep learning practitioners, and students with a basic understanding of reinforcement learning concepts who want to build, train, and deploy their own reinforcement learning systems from scratch using TensorFlow 2.x.

TensorFlow 1.x Deep Learning Cookbook

TensorFlow 1.x Deep Learning Cookbook
Author: Antonio Gulli
Publisher: Packt Publishing Ltd
Total Pages: 526
Release: 2017-12-12
Genre: Computers
ISBN: 1788291867

Take the next step in implementing various common and not-so-common neural networks with Tensorflow 1.x About This Book Skill up and implement tricky neural networks using Google's TensorFlow 1.x An easy-to-follow guide that lets you explore reinforcement learning, GANs, autoencoders, multilayer perceptrons and more. Hands-on recipes to work with Tensorflow on desktop, mobile, and cloud environment Who This Book Is For This book is intended for data analysts, data scientists, machine learning practitioners and deep learning enthusiasts who want to perform deep learning tasks on a regular basis and are looking for a handy guide they can refer to. People who are slightly familiar with neural networks, and now want to gain expertise in working with different types of neural networks and datasets, will find this book quite useful. What You Will Learn Install TensorFlow and use it for CPU and GPU operations Implement DNNs and apply them to solve different AI-driven problems. Leverage different data sets such as MNIST, CIFAR-10, and Youtube8m with TensorFlow and learn how to access and use them in your code. Use TensorBoard to understand neural network architectures, optimize the learning process, and peek inside the neural network black box. Use different regression techniques for prediction and classification problems Build single and multilayer perceptrons in TensorFlow Implement CNN and RNN in TensorFlow, and use it to solve real-world use cases. Learn how restricted Boltzmann Machines can be used to recommend movies. Understand the implementation of Autoencoders and deep belief networks, and use them for emotion detection. Master the different reinforcement learning methods to implement game playing agents. GANs and their implementation using TensorFlow. In Detail Deep neural networks (DNNs) have achieved a lot of success in the field of computer vision, speech recognition, and natural language processing. The entire world is filled with excitement about how deep networks are revolutionizing artificial intelligence. This exciting recipe-based guide will take you from the realm of DNN theory to implementing them practically to solve the real-life problems in artificial intelligence domain. In this book, you will learn how to efficiently use TensorFlow, Google's open source framework for deep learning. You will implement different deep learning networks such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Deep Q-learning Networks (DQNs), and Generative Adversarial Networks (GANs) with easy to follow independent recipes. You will learn how to make Keras as backend with TensorFlow. With a problem-solution approach, you will understand how to implement different deep neural architectures to carry out complex tasks at work. You will learn the performance of different DNNs on some popularly used data sets such as MNIST, CIFAR-10, Youtube8m, and more. You will not only learn about the different mobile and embedded platforms supported by TensorFlow but also how to set up cloud platforms for deep learning applications. Get a sneak peek of TPU architecture and how they will affect DNN future. By using crisp, no-nonsense recipes, you will become an expert in implementing deep learning techniques in growing real-world applications and research areas such as reinforcement learning, GANs, autoencoders and more. Style and approach This book consists of hands-on recipes where you'll deal with real-world problems. You'll execute a series of tasks as you walk through data mining challenges using TensorFlow 1.x. Your one-stop solution for common and not-so-common pain points, this is a book that you must have on the shelf.

TensorFlow 2.0 Computer Vision Cookbook

TensorFlow 2.0 Computer Vision Cookbook
Author: Jesus Martinez
Publisher: Packt Publishing Ltd
Total Pages: 542
Release: 2021-02-26
Genre: Computers
ISBN: 183882068X

Get well versed with state-of-the-art techniques to tailor training processes and boost the performance of computer vision models using machine learning and deep learning techniques Key FeaturesDevelop, train, and use deep learning algorithms for computer vision tasks using TensorFlow 2.xDiscover practical recipes to overcome various challenges faced while building computer vision modelsEnable machines to gain a human level understanding to recognize and analyze digital images and videosBook Description Computer vision is a scientific field that enables machines to identify and process digital images and videos. This book focuses on independent recipes to help you perform various computer vision tasks using TensorFlow. The book begins by taking you through the basics of deep learning for computer vision, along with covering TensorFlow 2.x's key features, such as the Keras and tf.data.Dataset APIs. You'll then learn about the ins and outs of common computer vision tasks, such as image classification, transfer learning, image enhancing and styling, and object detection. The book also covers autoencoders in domains such as inverse image search indexes and image denoising, while offering insights into various architectures used in the recipes, such as convolutional neural networks (CNNs), region-based CNNs (R-CNNs), VGGNet, and You Only Look Once (YOLO). Moving on, you'll discover tips and tricks to solve any problems faced while building various computer vision applications. Finally, you'll delve into more advanced topics such as Generative Adversarial Networks (GANs), video processing, and AutoML, concluding with a section focused on techniques to help you boost the performance of your networks. By the end of this TensorFlow book, you'll be able to confidently tackle a wide range of computer vision problems using TensorFlow 2.x. What you will learnUnderstand how to detect objects using state-of-the-art models such as YOLOv3Use AutoML to predict gender and age from imagesSegment images using different approaches such as FCNs and generative modelsLearn how to improve your network's performance using rank-N accuracy, label smoothing, and test time augmentationEnable machines to recognize people's emotions in videos and real-time streamsAccess and reuse advanced TensorFlow Hub models to perform image classification and object detectionGenerate captions for images using CNNs and RNNsWho this book is for This book is for computer vision developers and engineers, as well as deep learning practitioners looking for go-to solutions to various problems that commonly arise in computer vision. You will discover how to employ modern machine learning (ML) techniques and deep learning architectures to perform a plethora of computer vision tasks. Basic knowledge of Python programming and computer vision is required.

Deep Learning Cookbook

Deep Learning Cookbook
Author: Douwe Osinga
Publisher: "O'Reilly Media, Inc."
Total Pages: 255
Release: 2018-06-05
Genre: Computers
ISBN: 1491995793

Deep learning doesn’t have to be intimidating. Until recently, this machine-learning method required years of study, but with frameworks such as Keras and Tensorflow, software engineers without a background in machine learning can quickly enter the field. With the recipes in this cookbook, you’ll learn how to solve deep-learning problems for classifying and generating text, images, and music. Each chapter consists of several recipes needed to complete a single project, such as training a music recommending system. Author Douwe Osinga also provides a chapter with half a dozen techniques to help you if you’re stuck. Examples are written in Python with code available on GitHub as a set of Python notebooks. You’ll learn how to: Create applications that will serve real users Use word embeddings to calculate text similarity Build a movie recommender system based on Wikipedia links Learn how AIs see the world by visualizing their internal state Build a model to suggest emojis for pieces of text Reuse pretrained networks to build an inverse image search service Compare how GANs, autoencoders and LSTMs generate icons Detect music styles and index song collections

Python Deep Learning Cookbook

Python Deep Learning Cookbook
Author: Indra den Bakker
Publisher: Packt Publishing Ltd
Total Pages: 321
Release: 2017-10-27
Genre: Computers
ISBN: 1787122255

Solve different problems in modelling deep neural networks using Python, Tensorflow, and Keras with this practical guide About This Book Practical recipes on training different neural network models and tuning them for optimal performance Use Python frameworks like TensorFlow, Caffe, Keras, Theano for Natural Language Processing, Computer Vision, and more A hands-on guide covering the common as well as the not so common problems in deep learning using Python Who This Book Is For This book is intended for machine learning professionals who are looking to use deep learning algorithms to create real-world applications using Python. Thorough understanding of the machine learning concepts and Python libraries such as NumPy, SciPy and scikit-learn is expected. Additionally, basic knowledge in linear algebra and calculus is desired. What You Will Learn Implement different neural network models in Python Select the best Python framework for deep learning such as PyTorch, Tensorflow, MXNet and Keras Apply tips and tricks related to neural networks internals, to boost learning performances Consolidate machine learning principles and apply them in the deep learning field Reuse and adapt Python code snippets to everyday problems Evaluate the cost/benefits and performance implication of each discussed solution In Detail Deep Learning is revolutionizing a wide range of industries. For many applications, deep learning has proven to outperform humans by making faster and more accurate predictions. This book provides a top-down and bottom-up approach to demonstrate deep learning solutions to real-world problems in different areas. These applications include Computer Vision, Natural Language Processing, Time Series, and Robotics. The Python Deep Learning Cookbook presents technical solutions to the issues presented, along with a detailed explanation of the solutions. Furthermore, a discussion on corresponding pros and cons of implementing the proposed solution using one of the popular frameworks like TensorFlow, PyTorch, Keras and CNTK is provided. The book includes recipes that are related to the basic concepts of neural networks. All techniques s, as well as classical networks topologies. The main purpose of this book is to provide Python programmers a detailed list of recipes to apply deep learning to common and not-so-common scenarios. Style and approach Unique blend of independent recipes arranged in the most logical manner

Keras Deep Learning Cookbook

Keras Deep Learning Cookbook
Author: Rajdeep Dua
Publisher: Packt Publishing Ltd
Total Pages: 244
Release: 2018-10-31
Genre: Computers
ISBN: 1788623088

Leverage the power of deep learning and Keras to develop smarter and more efficient data models Key FeaturesUnderstand different neural networks and their implementation using KerasExplore recipes for training and fine-tuning your neural network modelsPut your deep learning knowledge to practice with real-world use-cases, tips, and tricksBook Description Keras has quickly emerged as a popular deep learning library. Written in Python, it allows you to train convolutional as well as recurrent neural networks with speed and accuracy. The Keras Deep Learning Cookbook shows you how to tackle different problems encountered while training efficient deep learning models, with the help of the popular Keras library. Starting with installing and setting up Keras, the book demonstrates how you can perform deep learning with Keras in the TensorFlow. From loading data to fitting and evaluating your model for optimal performance, you will work through a step-by-step process to tackle every possible problem faced while training deep models. You will implement convolutional and recurrent neural networks, adversarial networks, and more with the help of this handy guide. In addition to this, you will learn how to train these models for real-world image and language processing tasks. By the end of this book, you will have a practical, hands-on understanding of how you can leverage the power of Python and Keras to perform effective deep learning What you will learnInstall and configure Keras in TensorFlowMaster neural network programming using the Keras library Understand the different Keras layers Use Keras to implement simple feed-forward neural networks, CNNs and RNNsWork with various datasets and models used for image and text classificationDevelop text summarization and reinforcement learning models using KerasWho this book is for Keras Deep Learning Cookbook is for you if you are a data scientist or machine learning expert who wants to find practical solutions to common problems encountered while training deep learning models. A basic understanding of Python and some experience in machine learning and neural networks is required for this book.

TensorFlow Machine Learning Projects

TensorFlow Machine Learning Projects
Author: Ankit Jain
Publisher: Packt Publishing Ltd
Total Pages: 311
Release: 2018-11-30
Genre: Computers
ISBN: 1789132401

Implement TensorFlow's offerings such as TensorBoard, TensorFlow.js, TensorFlow Probability, and TensorFlow Lite to build smart automation projects Key FeaturesUse machine learning and deep learning principles to build real-world projectsGet to grips with TensorFlow's impressive range of module offeringsImplement projects on GANs, reinforcement learning, and capsule networkBook Description TensorFlow has transformed the way machine learning is perceived. TensorFlow Machine Learning Projects teaches you how to exploit the benefits—simplicity, efficiency, and flexibility—of using TensorFlow in various real-world projects. With the help of this book, you’ll not only learn how to build advanced projects using different datasets but also be able to tackle common challenges using a range of libraries from the TensorFlow ecosystem. To start with, you’ll get to grips with using TensorFlow for machine learning projects; you’ll explore a wide range of projects using TensorForest and TensorBoard for detecting exoplanets, TensorFlow.js for sentiment analysis, and TensorFlow Lite for digit classification. As you make your way through the book, you’ll build projects in various real-world domains, incorporating natural language processing (NLP), the Gaussian process, autoencoders, recommender systems, and Bayesian neural networks, along with trending areas such as Generative Adversarial Networks (GANs), capsule networks, and reinforcement learning. You’ll learn how to use the TensorFlow on Spark API and GPU-accelerated computing with TensorFlow to detect objects, followed by how to train and develop a recurrent neural network (RNN) model to generate book scripts. By the end of this book, you’ll have gained the required expertise to build full-fledged machine learning projects at work. What you will learnUnderstand the TensorFlow ecosystem using various datasets and techniquesCreate recommendation systems for quality product recommendationsBuild projects using CNNs, NLP, and Bayesian neural networksPlay Pac-Man using deep reinforcement learningDeploy scalable TensorFlow-based machine learning systemsGenerate your own book script using RNNsWho this book is for TensorFlow Machine Learning Projects is for you if you are a data analyst, data scientist, machine learning professional, or deep learning enthusiast with basic knowledge of TensorFlow. This book is also for you if you want to build end-to-end projects in the machine learning domain using supervised, unsupervised, and reinforcement learning techniques

Machine Learning for Cybersecurity Cookbook

Machine Learning for Cybersecurity Cookbook
Author: Emmanuel Tsukerman
Publisher: Packt Publishing Ltd
Total Pages: 338
Release: 2019-11-25
Genre: Computers
ISBN: 1838556346

Learn how to apply modern AI to create powerful cybersecurity solutions for malware, pentesting, social engineering, data privacy, and intrusion detection Key FeaturesManage data of varying complexity to protect your system using the Python ecosystemApply ML to pentesting, malware, data privacy, intrusion detection system(IDS) and social engineeringAutomate your daily workflow by addressing various security challenges using the recipes covered in the bookBook Description Organizations today face a major threat in terms of cybersecurity, from malicious URLs to credential reuse, and having robust security systems can make all the difference. With this book, you'll learn how to use Python libraries such as TensorFlow and scikit-learn to implement the latest artificial intelligence (AI) techniques and handle challenges faced by cybersecurity researchers. You'll begin by exploring various machine learning (ML) techniques and tips for setting up a secure lab environment. Next, you'll implement key ML algorithms such as clustering, gradient boosting, random forest, and XGBoost. The book will guide you through constructing classifiers and features for malware, which you'll train and test on real samples. As you progress, you'll build self-learning, reliant systems to handle cybersecurity tasks such as identifying malicious URLs, spam email detection, intrusion detection, network protection, and tracking user and process behavior. Later, you'll apply generative adversarial networks (GANs) and autoencoders to advanced security tasks. Finally, you'll delve into secure and private AI to protect the privacy rights of consumers using your ML models. By the end of this book, you'll have the skills you need to tackle real-world problems faced in the cybersecurity domain using a recipe-based approach. What you will learnLearn how to build malware classifiers to detect suspicious activitiesApply ML to generate custom malware to pentest your securityUse ML algorithms with complex datasets to implement cybersecurity conceptsCreate neural networks to identify fake videos and imagesSecure your organization from one of the most popular threats – insider threatsDefend against zero-day threats by constructing an anomaly detection systemDetect web vulnerabilities effectively by combining Metasploit and MLUnderstand how to train a model without exposing the training dataWho this book is for This book is for cybersecurity professionals and security researchers who are looking to implement the latest machine learning techniques to boost computer security, and gain insights into securing an organization using red and blue team ML. This recipe-based book will also be useful for data scientists and machine learning developers who want to experiment with smart techniques in the cybersecurity domain. Working knowledge of Python programming and familiarity with cybersecurity fundamentals will help you get the most out of this book.

PyTorch 1.x Reinforcement Learning Cookbook

PyTorch 1.x Reinforcement Learning Cookbook
Author: Yuxi (Hayden) Liu
Publisher: Packt Publishing Ltd
Total Pages: 334
Release: 2019-10-31
Genre: Computers
ISBN: 1838553231

Implement reinforcement learning techniques and algorithms with the help of real-world examples and recipes Key FeaturesUse PyTorch 1.x to design and build self-learning artificial intelligence (AI) modelsImplement RL algorithms to solve control and optimization challenges faced by data scientists todayApply modern RL libraries to simulate a controlled environment for your projectsBook Description Reinforcement learning (RL) is a branch of machine learning that has gained popularity in recent times. It allows you to train AI models that learn from their own actions and optimize their behavior. PyTorch has also emerged as the preferred tool for training RL models because of its efficiency and ease of use. With this book, you'll explore the important RL concepts and the implementation of algorithms in PyTorch 1.x. The recipes in the book, along with real-world examples, will help you master various RL techniques, such as dynamic programming, Monte Carlo simulations, temporal difference, and Q-learning. You'll also gain insights into industry-specific applications of these techniques. Later chapters will guide you through solving problems such as the multi-armed bandit problem and the cartpole problem using the multi-armed bandit algorithm and function approximation. You'll also learn how to use Deep Q-Networks to complete Atari games, along with how to effectively implement policy gradients. Finally, you'll discover how RL techniques are applied to Blackjack, Gridworld environments, internet advertising, and the Flappy Bird game. By the end of this book, you'll have developed the skills you need to implement popular RL algorithms and use RL techniques to solve real-world problems. What you will learnUse Q-learning and the state–action–reward–state–action (SARSA) algorithm to solve various Gridworld problemsDevelop a multi-armed bandit algorithm to optimize display advertisingScale up learning and control processes using Deep Q-NetworksSimulate Markov Decision Processes, OpenAI Gym environments, and other common control problemsSelect and build RL models, evaluate their performance, and optimize and deploy themUse policy gradient methods to solve continuous RL problemsWho this book is for Machine learning engineers, data scientists and AI researchers looking for quick solutions to different reinforcement learning problems will find this book useful. Although prior knowledge of machine learning concepts is required, experience with PyTorch will be useful but not necessary.