Machine Learning Technologies And Applications
Download Machine Learning Technologies And Applications full books in PDF, epub, and Kindle. Read online free Machine Learning Technologies And Applications ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Aboul-Ella Hassanien |
Publisher | : Springer Nature |
Total Pages | : 1144 |
Release | : 2021-03-04 |
Genre | : Technology & Engineering |
ISBN | : 3030697177 |
This book presents the refereed proceedings of the 6th International Conference on Advanced Machine Learning Technologies and Applications (AMLTA 2021) held in Cairo, Egypt, during March 22–24, 2021, and organized by the Scientific Research Group of Egypt (SRGE). The papers cover current research Artificial Intelligence Against COVID-19, Internet of Things Healthcare Systems, Deep Learning Technology, Sentiment analysis, Cyber-Physical System, Health Informatics, Data Mining, Power and Control Systems, Business Intelligence, Social media, Control Design, and Smart Systems.
Author | : Aboul Ella Hassanien |
Publisher | : Springer |
Total Pages | : 606 |
Release | : 2012-12-03 |
Genre | : Computers |
ISBN | : 3642353266 |
This book constitutes the refereed proceedings of the First International Conference on Advanced Machine Learning Technologies and Applications, AMLTA 2012, held in Cairo, Egypt, in December 2012. The 58 full papers presented were carefully reviewed and selected from 99 intial submissions. The papers are organized in topical sections on rough sets and applications, machine learning in pattern recognition and image processing, machine learning in multimedia computing, bioinformatics and cheminformatics, data classification and clustering, cloud computing and recommender systems.
Author | : Aboul Ella Hassanien |
Publisher | : Springer Nature |
Total Pages | : 737 |
Release | : 2020-05-25 |
Genre | : Technology & Engineering |
ISBN | : 9811533830 |
This book presents the refereed proceedings of the 5th International Conference on Advanced Machine Learning Technologies and Applications (AMLTA 2020), held at Manipal University Jaipur, India, on February 13 – 15, 2020, and organized in collaboration with the Scientific Research Group in Egypt (SRGE). The papers cover current research in machine learning, big data, Internet of Things, biomedical engineering, fuzzy logic and security, as well as intelligence swarms and optimization.
Author | : PETER. WLODARCZAK |
Publisher | : CRC Press |
Total Pages | : 188 |
Release | : 2021-06-30 |
Genre | : |
ISBN | : 9781032086774 |
In recent years, machine learning has gained a lot of interest. Due to the advances in processor technology and the availability of large amounts of data, machine learning techniques have provided astounding results in areas such as object recognition or natural language processing. New approaches, e.g. deep learning, have provided groundbreaking outcomes in fields such as multimedia mining or voice recognition. Machine learning is now used in virtually every domain and deep learning algorithms are present in many devices such as smartphones, cars, drones, healthcare equipment, or smart home devices. The Internet, cloud computing and the Internet of Things produce a tsunami of data and machine learning provides the methods to effectively analyze the data and discover actionable knowledge. This book describes the most common machine learning techniques such as Bayesian models, support vector machines, decision tree induction, regression analysis, and recurrent and convolutional neural networks. It first gives an introduction into the principles of machine learning. It then covers the basic methods including the mathematical foundations. The biggest part of the book provides common machine learning algorithms and their applications. Finally, the book gives an outlook into some of the future developments and possible new research areas of machine learning and artificial intelligence in general. This book is meant to be an introduction into machine learning. It does not require prior knowledge in this area. It covers some of the basic mathematical principle but intends to be understandable even without a background in mathematics. It can be read chapter wise and intends to be comprehensible, even when not starting in the beginning. Finally, it also intends to be a reference book. Key Features: Describes real world problems that can be solved using Machine Learning Provides methods for directly applying Machine Learning techniques to concrete real world problems Demonstrates how to apply Machine Learning techniques using different frameworks such as TensorFlow, MALLET, R
Author | : Management Association, Information Resources |
Publisher | : IGI Global |
Total Pages | : 2174 |
Release | : 2011-07-31 |
Genre | : Computers |
ISBN | : 1609608194 |
"This reference offers a wide-ranging selection of key research in a complex field of study,discussing topics ranging from using machine learning to improve the effectiveness of agents and multi-agent systems to developing machine learning software for high frequency trading in financial markets"--Provided by publishe
Author | : Mettu Srinivas |
Publisher | : John Wiley & Sons |
Total Pages | : 372 |
Release | : 2021-08-10 |
Genre | : Computers |
ISBN | : 1119769248 |
Machine Learning Algorithms is for current and ambitious machine learning specialists looking to implement solutions to real-world machine learning problems. It talks entirely about the various applications of machine and deep learning techniques, with each chapter dealing with a novel approach of machine learning architecture for a specific application, and then compares the results with previous algorithms. The book discusses many methods based in different fields, including statistics, pattern recognition, neural networks, artificial intelligence, sentiment analysis, control, and data mining, in order to present a unified treatment of machine learning problems and solutions. All learning algorithms are explained so that the user can easily move from the equations in the book to a computer program.
Author | : Mahrishi, Mehul |
Publisher | : IGI Global |
Total Pages | : 344 |
Release | : 2020-04-24 |
Genre | : Computers |
ISBN | : 1799830977 |
Artificial intelligence and its various components are rapidly engulfing almost every professional industry. Specific features of AI that have proven to be vital solutions to numerous real-world issues are machine learning and deep learning. These intelligent agents unlock higher levels of performance and efficiency, creating a wide span of industrial applications. However, there is a lack of research on the specific uses of machine/deep learning in the professional realm. Machine Learning and Deep Learning in Real-Time Applications provides emerging research exploring the theoretical and practical aspects of machine learning and deep learning and their implementations as well as their ability to solve real-world problems within several professional disciplines including healthcare, business, and computer science. Featuring coverage on a broad range of topics such as image processing, medical improvements, and smart grids, this book is ideally designed for researchers, academicians, scientists, industry experts, scholars, IT professionals, engineers, and students seeking current research on the multifaceted uses and implementations of machine learning and deep learning across the globe.
Author | : C. Kiran Mai |
Publisher | : Springer |
Total Pages | : 336 |
Release | : 2022-03-17 |
Genre | : Technology & Engineering |
ISBN | : 9789813340480 |
This book comprises the best deliberations with the theme “Machine Learning Technologies and Applications” in the “International Conference on Advances in Computer Engineering and Communication Systems (ICACECS 2020),” organized by the Department of Computer Science and Engineering, VNR Vignana Jyothi Institute of Engineering and Technology. The book provides insights into the recent trends and developments in the field of computer science with a special focus on the machine learning and big data. The book focuses on advanced topics in artificial intelligence, machine learning, data mining and big data computing, cloud computing, Internet of things, distributed computing and smart systems.
Author | : Seda Khadimally |
Publisher | : Information Science Reference |
Total Pages | : 300 |
Release | : 2021 |
Genre | : Artificial intelligence |
ISBN | : 9781799877769 |
Focuses on the parameters of remote learning, machine learning, deep learning, and artificial intelligence under 21st-century learning and instructional contexts. Topics covered include data coding and social networking technology.
Author | : Subhendu Kumar Pani |
Publisher | : CRC Press |
Total Pages | : 346 |
Release | : 2022-09-01 |
Genre | : Technology & Engineering |
ISBN | : 1000793559 |
Cloud Computing and Big Data technologies have become the new descriptors of the digital age. The global amount of digital data has increased more than nine times in volume in just five years and by 2030 its volume may reach a staggering 65 trillion gigabytes. This explosion of data has led to opportunities and transformation in various areas such as healthcare, enterprises, industrial manufacturing and transportation. New Cloud Computing and Big Data tools endow researchers and analysts with novel techniques and opportunities to collect, manage and analyze the vast quantities of data. In Cloud and Big Data Analytics, the two areas of Swarm Intelligence and Deep Learning are a developing type of Machine Learning techniques that show enormous potential for solving complex business problems. Deep Learning enables computers to analyze large quantities of unstructured and binary data and to deduce relationships without requiring specific models or programming instructions. This book introduces the state-of-the-art trends and advances in the use of Machine Learning in Cloud and Big Data Analytics. The book will serve as a reference for Data Scientists, systems architects, developers, new researchers and graduate level students in Computer and Data science. The book will describe the concepts necessary to understand current Machine Learning issues, challenges and possible solutions as well as upcoming trends in Big Data Analytics.