Machine Learning in Social Networks

Machine Learning in Social Networks
Author: Manasvi Aggarwal
Publisher: Springer Nature
Total Pages: 121
Release: 2020-11-25
Genre: Technology & Engineering
ISBN: 9813340223

This book deals with network representation learning. It deals with embedding nodes, edges, subgraphs and graphs. There is a growing interest in understanding complex systems in different domains including health, education, agriculture and transportation. Such complex systems are analyzed by modeling, using networks that are aptly called complex networks. Networks are becoming ubiquitous as they can represent many real-world relational data, for instance, information networks, molecular structures, telecommunication networks and protein–protein interaction networks. Analysis of these networks provides advantages in many fields such as recommendation (recommending friends in a social network), biological field (deducing connections between proteins for treating new diseases) and community detection (grouping users of a social network according to their interests) by leveraging the latent information of networks. An active and important area of current interest is to come out with algorithms that learn features by embedding nodes or (sub)graphs into a vector space. These tasks come under the broad umbrella of representation learning. A representation learning model learns a mapping function that transforms the graphs' structure information to a low-/high-dimension vector space maintaining all the relevant properties.

Machine Learning Techniques for Online Social Networks

Machine Learning Techniques for Online Social Networks
Author: Tansel Özyer
Publisher: Springer
Total Pages: 241
Release: 2018-05-30
Genre: Social Science
ISBN: 3319899325

The book covers tools in the study of online social networks such as machine learning techniques, clustering, and deep learning. A variety of theoretical aspects, application domains, and case studies for analyzing social network data are covered. The aim is to provide new perspectives on utilizing machine learning and related scientific methods and techniques for social network analysis. Machine Learning Techniques for Online Social Networks will appeal to researchers and students in these fields.

Social Network Forensics, Cyber Security, and Machine Learning

Social Network Forensics, Cyber Security, and Machine Learning
Author: P. Venkata Krishna
Publisher: Springer
Total Pages: 121
Release: 2018-12-29
Genre: Technology & Engineering
ISBN: 981131456X

This book discusses the issues and challenges in Online Social Networks (OSNs). It highlights various aspects of OSNs consisting of novel social network strategies and the development of services using different computing models. Moreover, the book investigates how OSNs are impacted by cutting-edge innovations.

Social Computing with Artificial Intelligence

Social Computing with Artificial Intelligence
Author: Xun Liang
Publisher: Springer Nature
Total Pages: 289
Release: 2020-09-16
Genre: Computers
ISBN: 9811577609

This book provides a comprehensive introduction to the application of artificial intelligence in social computing, from fundamental data processing to advanced social network computing. To broaden readers’ understanding of the topics addressed, it includes extensive data and a large number of charts and references, covering theories, techniques and applications. It particularly focuses on data collection, data mining, artificial intelligence algorithms in social computing, and several key applications of social computing application, and also discusses network propagation mechanisms and dynamic analysis, which provide useful insights into how information is disseminated in online social networks. This book is intended for readers with a basic knowledge of advanced mathematics and computer science.

Research Anthology on Architectures, Frameworks, and Integration Strategies for Distributed and Cloud Computing

Research Anthology on Architectures, Frameworks, and Integration Strategies for Distributed and Cloud Computing
Author: Management Association, Information Resources
Publisher: IGI Global
Total Pages: 2700
Release: 2021-01-25
Genre: Computers
ISBN: 1799853403

Distributed systems intertwine with our everyday lives. The benefits and current shortcomings of the underpinning technologies are experienced by a wide range of people and their smart devices. With the rise of large-scale IoT and similar distributed systems, cloud bursting technologies, and partial outsourcing solutions, private entities are encouraged to increase their efficiency and offer unparalleled availability and reliability to their users. The Research Anthology on Architectures, Frameworks, and Integration Strategies for Distributed and Cloud Computing is a vital reference source that provides valuable insight into current and emergent research occurring within the field of distributed computing. It also presents architectures and service frameworks to achieve highly integrated distributed systems and solutions to integration and efficient management challenges faced by current and future distributed systems. Highlighting a range of topics such as data sharing, wireless sensor networks, and scalability, this multi-volume book is ideally designed for system administrators, integrators, designers, developers, researchers, academicians, and students.

Sentiment Analysis in Social Networks

Sentiment Analysis in Social Networks
Author: Federico Alberto Pozzi
Publisher: Morgan Kaufmann
Total Pages: 286
Release: 2016-10-06
Genre: Computers
ISBN: 0128044381

The aim of Sentiment Analysis is to define automatic tools able to extract subjective information from texts in natural language, such as opinions and sentiments, in order to create structured and actionable knowledge to be used by either a decision support system or a decision maker. Sentiment analysis has gained even more value with the advent and growth of social networking. Sentiment Analysis in Social Networks begins with an overview of the latest research trends in the field. It then discusses the sociological and psychological processes underling social network interactions. The book explores both semantic and machine learning models and methods that address context-dependent and dynamic text in online social networks, showing how social network streams pose numerous challenges due to their large-scale, short, noisy, context- dependent and dynamic nature. Further, this volume: - Takes an interdisciplinary approach from a number of computing domains, including natural language processing, machine learning, big data, and statistical methodologies - Provides insights into opinion spamming, reasoning, and social network analysis - Shows how to apply sentiment analysis tools for a particular application and domain, and how to get the best results for understanding the consequences - Serves as a one-stop reference for the state-of-the-art in social media analytics - Takes an interdisciplinary approach from a number of computing domains, including natural language processing, big data, and statistical methodologies - Provides insights into opinion spamming, reasoning, and social network mining - Shows how to apply opinion mining tools for a particular application and domain, and how to get the best results for understanding the consequences - Serves as a one-stop reference for the state-of-the-art in social media analytics

Smart Computing

Smart Computing
Author: Mohammad Ayoub Khan
Publisher: CRC Press
Total Pages: 926
Release: 2021-06-22
Genre: Computers
ISBN: 1000382567

The field of SMART technologies is an interdependent discipline. It involves the latest burning issues ranging from machine learning, cloud computing, optimisations, modelling techniques, Internet of Things, data analytics, and Smart Grids among others, that are all new fields. It is an applied and multi-disciplinary subject with a focus on Specific, Measurable, Achievable, Realistic & Timely system operations combined with Machine intelligence & Real-Time computing. It is not possible for any one person to comprehensively cover all aspects relevant to SMART Computing in a limited-extent work. Therefore, these conference proceedings address various issues through the deliberations by distinguished Professors and researchers. The SMARTCOM 2020 proceedings contain tracks dedicated to different areas of smart technologies such as Smart System and Future Internet, Machine Intelligence and Data Science, Real-Time and VLSI Systems, Communication and Automation Systems. The proceedings can be used as an advanced reference for research and for courses in smart technologies taught at graduate level.