Machine Learning In The Oil And Gas Industry
Download Machine Learning In The Oil And Gas Industry full books in PDF, epub, and Kindle. Read online free Machine Learning In The Oil And Gas Industry ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Patrick Bangert |
Publisher | : Gulf Professional Publishing |
Total Pages | : 290 |
Release | : 2021-03-04 |
Genre | : Science |
ISBN | : 0128209143 |
Machine Learning and Data Science in the Oil and Gas Industry explains how machine learning can be specifically tailored to oil and gas use cases. Petroleum engineers will learn when to use machine learning, how it is already used in oil and gas operations, and how to manage the data stream moving forward. Practical in its approach, the book explains all aspects of a data science or machine learning project, including the managerial parts of it that are so often the cause for failure. Several real-life case studies round out the book with topics such as predictive maintenance, soft sensing, and forecasting. Viewed as a guide book, this manual will lead a practitioner through the journey of a data science project in the oil and gas industry circumventing the pitfalls and articulating the business value. - Chart an overview of the techniques and tools of machine learning including all the non-technological aspects necessary to be successful - Gain practical understanding of machine learning used in oil and gas operations through contributed case studies - Learn change management skills that will help gain confidence in pursuing the technology - Understand the workflow of a full-scale project and where machine learning benefits (and where it does not)
Author | : Yogendra Narayan Pandey |
Publisher | : Apress |
Total Pages | : 300 |
Release | : 2020-11-03 |
Genre | : Computers |
ISBN | : 9781484260937 |
Apply machine and deep learning to solve some of the challenges in the oil and gas industry. The book begins with a brief discussion of the oil and gas exploration and production life cycle in the context of data flow through the different stages of industry operations. This leads to a survey of some interesting problems, which are good candidates for applying machine and deep learning approaches. The initial chapters provide a primer on the Python programming language used for implementing the algorithms; this is followed by an overview of supervised and unsupervised machine learning concepts. The authors provide industry examples using open source data sets along with practical explanations of the algorithms, without diving too deep into the theoretical aspects of the algorithms employed. Machine Learning in the Oil and Gas Industry covers problems encompassing diverse industry topics, including geophysics (seismic interpretation), geological modeling, reservoir engineering, and production engineering. Throughout the book, the emphasis is on providing a practical approach with step-by-step explanations and code examples for implementing machine and deep learning algorithms for solving real-life problems in the oil and gas industry. What You Will Learn Understanding the end-to-end industry life cycle and flow of data in the industrial operations of the oil and gas industry Get the basic concepts of computer programming and machine and deep learning required for implementing the algorithms used Study interesting industry problems that are good candidates for being solved by machine and deep learning Discover the practical considerations and challenges for executing machine and deep learning projects in the oil and gas industry Who This Book Is For Professionals in the oil and gas industry who can benefit from a practical understanding of the machine and deep learning approach to solving real-life problems.
Author | : Hoss Belyadi |
Publisher | : Gulf Professional Publishing |
Total Pages | : 478 |
Release | : 2021-04-09 |
Genre | : Science |
ISBN | : 0128219300 |
Machine Learning Guide for Oil and Gas Using Python: A Step-by-Step Breakdown with Data, Algorithms, Codes, and Applications delivers a critical training and resource tool to help engineers understand machine learning theory and practice, specifically referencing use cases in oil and gas. The reference moves from explaining how Python works to step-by-step examples of utilization in various oil and gas scenarios, such as well testing, shale reservoirs and production optimization. Petroleum engineers are quickly applying machine learning techniques to their data challenges, but there is a lack of references beyond the math or heavy theory of machine learning. Machine Learning Guide for Oil and Gas Using Python details the open-source tool Python by explaining how it works at an introductory level then bridging into how to apply the algorithms into different oil and gas scenarios. While similar resources are often too mathematical, this book balances theory with applications, including use cases that help solve different oil and gas data challenges. - Helps readers understand how open-source Python can be utilized in practical oil and gas challenges - Covers the most commonly used algorithms for both supervised and unsupervised learning - Presents a balanced approach of both theory and practicality while progressing from introductory to advanced analytical techniques
Author | : Abdolhossein Hemmati-Sarapardeh |
Publisher | : Gulf Professional Publishing |
Total Pages | : 324 |
Release | : 2020-08-26 |
Genre | : Science |
ISBN | : 0128223855 |
Applications of Artificial Intelligence Techniques in the Petroleum Industry gives engineers a critical resource to help them understand the machine learning that will solve specific engineering challenges. The reference begins with fundamentals, covering preprocessing of data, types of intelligent models, and training and optimization algorithms. The book moves on to methodically address artificial intelligence technology and applications by the upstream sector, covering exploration, drilling, reservoir and production engineering. Final sections cover current gaps and future challenges. - Teaches how to apply machine learning algorithms that work best in exploration, drilling, reservoir or production engineering - Helps readers increase their existing knowledge on intelligent data modeling, machine learning and artificial intelligence, with foundational chapters covering the preprocessing of data and training on algorithms - Provides tactics on how to cover complex projects such as shale gas, tight oils, and other types of unconventional reservoirs with more advanced model input
Author | : Shahab D. Mohaghegh |
Publisher | : Springer |
Total Pages | : 292 |
Release | : 2017-02-09 |
Genre | : Technology & Engineering |
ISBN | : 3319487531 |
This book describes the application of modern information technology to reservoir modeling and well management in shale. While covering Shale Analytics, it focuses on reservoir modeling and production management of shale plays, since conventional reservoir and production modeling techniques do not perform well in this environment. Topics covered include tools for analysis, predictive modeling and optimization of production from shale in the presence of massive multi-cluster, multi-stage hydraulic fractures. Given the fact that the physics of storage and fluid flow in shale are not well-understood and well-defined, Shale Analytics avoids making simplifying assumptions and concentrates on facts (Hard Data - Field Measurements) to reach conclusions. Also discussed are important insights into understanding completion practices and re-frac candidate selection and design. The flexibility and power of the technique is demonstrated in numerous real-world situations.
Author | : Geoffrey Cann |
Publisher | : Madcann Press |
Total Pages | : 290 |
Release | : 2019-01-08 |
Genre | : Gas industry |
ISBN | : 9781999514907 |
The oil and gas industry is at a crossroads. Recent low prices, rapidly growing alternative fuels like renewables, the permanent swing from peak oil to super abundance, shifting consumer preferences, and global pressures to decarbonize suggest a challenged industry for the foreseeable future. Digital advances offer ways to lower costs of production, improve productivity, reduce carbon emissions, and regain public confidence. A wait-and-see attitude to digital innovation has failed many industries already, and the leaders of oil and gas urgently need guidance on how digital both disrupts and enhances their industry. Written by the world's leading experts on the intersection of digital technologies and the oil and gas industry, Bits, Bytes, and Barrels sets out the reasons why adoption is slow, describes the size and scale of both the opportunity and the threat from digital, identifies the key digital technologies and the role that they play in a digital future, and recommends a set of actions for leaders to take to accelerate the adoption of digital in the business. Providing an independent and expert perspective, Bits, Bytes, and Barrels addresses the impacts of digital across the breadth of the industry--from onshore to offshore, from upstream to midstream to integrated--and outlines a roadmap to help the decision-makers at all levels of the industry take meaningful action toward promising and rewarding digital adoption.
Author | : Keith R. Holdaway |
Publisher | : John Wiley & Sons |
Total Pages | : 368 |
Release | : 2017-10-09 |
Genre | : Business & Economics |
ISBN | : 1119215102 |
Leverage Big Data analytics methodologies to add value to geophysical and petrophysical exploration data Enhance Oil & Gas Exploration with Data-Driven Geophysical and Petrophysical Models demonstrates a new approach to geophysics and petrophysics data analysis using the latest methods drawn from Big Data. Written by two geophysicists with a combined 30 years in the industry, this book shows you how to leverage continually maturing computational intelligence to gain deeper insight from specific exploration data. Case studies illustrate the value propositions of this alternative analytical workflow, and in-depth discussion addresses the many Big Data issues in geophysics and petrophysics. From data collection and context through real-world everyday applications, this book provides an essential resource for anyone involved in oil and gas exploration. Recent and continual advances in machine learning are driving a rapid increase in empirical modeling capabilities. This book shows you how these new tools and methodologies can enhance geophysical and petrophysical data analysis, increasing the value of your exploration data. Apply data-driven modeling concepts in a geophysical and petrophysical context Learn how to get more information out of models and simulations Add value to everyday tasks with the appropriate Big Data application Adjust methodology to suit diverse geophysical and petrophysical contexts Data-driven modeling focuses on analyzing the total data within a system, with the goal of uncovering connections between input and output without definitive knowledge of the system's physical behavior. This multi-faceted approach pushes the boundaries of conventional modeling, and brings diverse fields of study together to apply new information and technology in new and more valuable ways. Enhance Oil & Gas Exploration with Data-Driven Geophysical and Petrophysical Models takes you beyond traditional deterministic interpretation to the future of exploration data analysis.
Author | : Bernard Marr |
Publisher | : John Wiley & Sons |
Total Pages | : 220 |
Release | : 2019-04-15 |
Genre | : Business & Economics |
ISBN | : 1119548985 |
Cyber-solutions to real-world business problems Artificial Intelligence in Practice is a fascinating look into how companies use AI and machine learning to solve problems. Presenting 50 case studies of actual situations, this book demonstrates practical applications to issues faced by businesses around the globe. The rapidly evolving field of artificial intelligence has expanded beyond research labs and computer science departments and made its way into the mainstream business environment. Artificial intelligence and machine learning are cited as the most important modern business trends to drive success. It is used in areas ranging from banking and finance to social media and marketing. This technology continues to provide innovative solutions to businesses of all sizes, sectors and industries. This engaging and topical book explores a wide range of cases illustrating how businesses use AI to boost performance, drive efficiency, analyse market preferences and many others. Best-selling author and renowned AI expert Bernard Marr reveals how machine learning technology is transforming the way companies conduct business. This detailed examination provides an overview of each company, describes the specific problem and explains how AI facilitates resolution. Each case study provides a comprehensive overview, including some technical details as well as key learning summaries: Understand how specific business problems are addressed by innovative machine learning methods Explore how current artificial intelligence applications improve performance and increase efficiency in various situations Expand your knowledge of recent AI advancements in technology Gain insight on the future of AI and its increasing role in business and industry Artificial Intelligence in Practice: How 50 Successful Companies Used Artificial Intelligence to Solve Problems is an insightful and informative exploration of the transformative power of technology in 21st century commerce.
Author | : Gustavo Carvajal |
Publisher | : Gulf Professional Publishing |
Total Pages | : 376 |
Release | : 2017-12-05 |
Genre | : Technology & Engineering |
ISBN | : 012804747X |
Intelligent Digital Oil and Gas Fields: Concepts, Collaboration, and Right-time Decisions delivers to the reader a roadmap through the fast-paced changes in the digital oil field landscape of technology in the form of new sensors, well mechanics such as downhole valves, data analytics and models for dealing with a barrage of data, and changes in the way professionals collaborate on decisions. The book introduces the new age of digital oil and gas technology and process components and provides a backdrop to the value and experience industry has achieved from these in the last few years. The book then takes the reader on a journey first at a well level through instrumentation and measurement for real-time data acquisition, and then provides practical information on analytics on the real-time data. Artificial intelligence techniques provide insights from the data. The road then travels to the "integrated asset" by detailing how companies utilize Integrated Asset Models to manage assets (reservoirs) within DOF context. From model to practice, new ways to operate smart wells enable optimizing the asset. Intelligent Digital Oil and Gas Fields is packed with examples and lessons learned from various case studies and provides extensive references for further reading and a final chapter on the "next generation digital oil field," e.g., cloud computing, big data analytics and advances in nanotechnology. This book is a reference that can help managers, engineers, operations, and IT experts understand specifics on how to filter data to create useful information, address analytics, and link workflows across the production value chain enabling teams to make better decisions with a higher degree of certainty and reduced risk. - Covers multiple examples and lessons learned from a variety of reservoirs from around the world and production situations - Includes techniques on change management and collaboration - Delivers real and readily applicable knowledge on technical equipment, workflows and data challenges such as acquisition and quality control that make up the digital oil and gas field solutions of today - Describes collaborative systems and ways of working and how companies are transitioning work force to use the technology and making more optimal decisions
Author | : Pendyala, Vishnu S. |
Publisher | : IGI Global |
Total Pages | : 307 |
Release | : 2022-06-24 |
Genre | : Computers |
ISBN | : 1668440474 |
Learning has been fundamental to the growth and evolution of humanity and civilization. The same concepts of learning, applied to the tasks that machines can perform, are having a similar effect now. Machine learning is evolving computation and its applications like never before. It is now widely recognized that machine learning is playing a similar role to electricity in the late 19th and early 20th centuries in modernizing the world. From simple high school science projects to large-scale radio astronomy, machine learning has revolutionized it all—however, a few of the applications clearly stand out as transforming the world and opening up a new era. Machine Learning for Societal Improvement, Modernization, and Progress showcases the path-breaking applications of machine learning that are leading to the next generation of computing and living standards. The focus of the book is machine learning and its application to specific domains, which is resulting in substantial civilizational progress. Covering topics such as lifespan prediction, smart transportation networks, and socio-economic data, this premier reference source is a dynamic resource for data scientists, industry leaders, practitioners, students and faculty of higher education, sociologists, researchers, and academicians.