Mobile Edge Computing

Mobile Edge Computing
Author: Yan Zhang
Publisher: Springer Nature
Total Pages: 123
Release: 2021-10-01
Genre: Computers
ISBN: 3030839443

This is an open access book. It offers comprehensive, self-contained knowledge on Mobile Edge Computing (MEC), which is a very promising technology for achieving intelligence in the next-generation wireless communications and computing networks.The book starts with the basic concepts, key techniques and network architectures of MEC. Then, we present the wide applications of MEC, including edge caching, 6G networks, Internet of Vehicles, and UAVs. In the last part, we present new opportunities when MEC meets blockchain, Artificial Intelligence, and distributed machine learning (e.g., federated learning). We also identify the emerging applications of MEC in pandemic, industrial Internet of Things and disaster management.The book allows an easy cross-reference owing to the broad coverage on both the principle and applications of MEC. The book is written for people interested in communications and computer networks at all levels. The primary audience includes senior undergraduates, postgraduates, educators, scientists, researchers, developers, engineers, innovators and research strategists.

Practical Deep Learning for Cloud, Mobile, and Edge

Practical Deep Learning for Cloud, Mobile, and Edge
Author: Anirudh Koul
Publisher: "O'Reilly Media, Inc."
Total Pages: 585
Release: 2019-10-14
Genre: Computers
ISBN: 1492034819

Whether you’re a software engineer aspiring to enter the world of deep learning, a veteran data scientist, or a hobbyist with a simple dream of making the next viral AI app, you might have wondered where to begin. This step-by-step guide teaches you how to build practical deep learning applications for the cloud, mobile, browsers, and edge devices using a hands-on approach. Relying on years of industry experience transforming deep learning research into award-winning applications, Anirudh Koul, Siddha Ganju, and Meher Kasam guide you through the process of converting an idea into something that people in the real world can use. Train, tune, and deploy computer vision models with Keras, TensorFlow, Core ML, and TensorFlow Lite Develop AI for a range of devices including Raspberry Pi, Jetson Nano, and Google Coral Explore fun projects, from Silicon Valley’s Not Hotdog app to 40+ industry case studies Simulate an autonomous car in a video game environment and build a miniature version with reinforcement learning Use transfer learning to train models in minutes Discover 50+ practical tips for maximizing model accuracy and speed, debugging, and scaling to millions of users

Mobile Edge Artificial Intelligence

Mobile Edge Artificial Intelligence
Author: Yuanming Shi
Publisher: Elsevier
Total Pages: 206
Release: 2021-08-17
Genre: Computers
ISBN: 0128238178

Mobile Edge Artificial Intelligence: Opportunities and Challenges presents recent advances in wireless technologies and nonconvex optimization techniques for designing efficient edge AI systems. The book includes comprehensive coverage on modeling, algorithm design and theoretical analysis. Through typical examples, the powerfulness of this set of systems and algorithms is demonstrated, along with their abilities to make low-latency, reliable and private intelligent decisions at network edge. With the availability of massive datasets, high performance computing platforms, sophisticated algorithms and software toolkits, AI has achieved remarkable success in many application domains. As such, intelligent wireless networks will be designed to leverage advanced wireless communications and mobile computing technologies to support AI-enabled applications at various edge mobile devices with limited communication, computation, hardware and energy resources. Presents advanced key enabling techniques, including model compression, wireless MapReduce and wireless cooperative transmission Provides advanced 6G wireless techniques, including over-the-air computation and reconfigurable intelligent surface Includes principles for designing communication-efficient edge inference systems, communication-efficient training systems, and communication-efficient optimization algorithms for edge machine learning

Advances in Computing and Data Sciences

Advances in Computing and Data Sciences
Author: Mayank Singh
Publisher: Springer Nature
Total Pages: 532
Release: 2020-07-17
Genre: Computers
ISBN: 9811566348

This book constitutes the post-conference proceedings of the 4th International Conference on Advances in Computing and Data Sciences, ICACDS 2020, held in Valletta, Malta, in April 2020.* The 46 full papers were carefully reviewed and selected from 354 submissions. The papers are centered around topics like advanced computing, data sciences, distributed systems organizing principles, development frameworks and environments, software verification and validation, computational complexity and cryptography, machine learning theory, database theory, probabilistic representations. * The conference was held virtually due to the COVID-19 pandemic.

Edge AI

Edge AI
Author: Xiaofei Wang
Publisher: Springer Nature
Total Pages: 156
Release: 2020-08-31
Genre: Computers
ISBN: 9811561869

As an important enabler for changing people’s lives, advances in artificial intelligence (AI)-based applications and services are on the rise, despite being hindered by efficiency and latency issues. By focusing on deep learning as the most representative technique of AI, this book provides a comprehensive overview of how AI services are being applied to the network edge near the data sources, and demonstrates how AI and edge computing can be mutually beneficial. To do so, it introduces and discusses: 1) edge intelligence and intelligent edge; and 2) their implementation methods and enabling technologies, namely AI training and inference in the customized edge computing framework. Gathering essential information previously scattered across the communication, networking, and AI areas, the book can help readers to understand the connections between key enabling technologies, e.g. a) AI applications in edge; b) AI inference in edge; c) AI training for edge; d) edge computing for AI; and e) using AI to optimize edge. After identifying these five aspects, which are essential for the fusion of edge computing and AI, it discusses current challenges and outlines future trends in achieving more pervasive and fine-grained intelligence with the aid of edge computing.

Deep Learning and Edge Computing Solutions for High Performance Computing

Deep Learning and Edge Computing Solutions for High Performance Computing
Author: A. Suresh
Publisher: Springer
Total Pages: 279
Release: 2022-02-11
Genre: Technology & Engineering
ISBN: 9783030602673

This book provides an insight into ways of inculcating the need for applying mobile edge data analytics in bioinformatics and medicine. The book is a comprehensive reference that provides an overview of the current state of medical treatments and systems and offers emerging solutions for a more personalized approach to the healthcare field. Topics include deep learning methods for applications in object detection and identification, object tracking, human action recognition, and cross-modal and multimodal data analysis. High performance computing systems for applications in healthcare are also discussed. The contributors also include information on microarray data analysis, sequence analysis, genomics based analytics, disease network analysis, and techniques for big data Analytics and health information technology.

Mobile Edge Computing

Mobile Edge Computing
Author: Anwesha Mukherjee
Publisher: Springer Nature
Total Pages: 598
Release: 2021-11-18
Genre: Computers
ISBN: 3030698939

Mobile Edge Computing (MEC) provides cloud-like subscription-oriented services at the edge of mobile network. For low latency and high bandwidth services, edge computing assisted IoT (Internet of Things) has become the pillar for the development of smart environments and their applications such as smart home, smart health, smart traffic management, smart agriculture, and smart city. This book covers the fundamental concept of the MEC and its real-time applications. The book content is organized into three parts: Part A covers the architecture and working model of MEC, Part B focuses on the systems, platforms, services and issues of MEC, and Part C emphases on various applications of MEC. This book is targeted for graduate students, researchers, developers, and service providers interested in learning about the state-of-the-art in MEC technologies, innovative applications, and future research directions.

Fog Computing

Fog Computing
Author: Assad Abbas
Publisher: John Wiley & Sons
Total Pages: 616
Release: 2020-04-21
Genre: Technology & Engineering
ISBN: 1119551692

Summarizes the current state and upcoming trends within the area of fog computing Written by some of the leading experts in the field, Fog Computing: Theory and Practice focuses on the technological aspects of employing fog computing in various application domains, such as smart healthcare, industrial process control and improvement, smart cities, and virtual learning environments. In addition, the Machine-to-Machine (M2M) communication methods for fog computing environments are covered in depth. Presented in two parts—Fog Computing Systems and Architectures, and Fog Computing Techniques and Application—this book covers such important topics as energy efficiency and Quality of Service (QoS) issues, reliability and fault tolerance, load balancing, and scheduling in fog computing systems. It also devotes special attention to emerging trends and the industry needs associated with utilizing the mobile edge computing, Internet of Things (IoT), resource and pricing estimation, and virtualization in the fog environments. Includes chapters on deep learning, mobile edge computing, smart grid, and intelligent transportation systems beyond the theoretical and foundational concepts Explores real-time traffic surveillance from video streams and interoperability of fog computing architectures Presents the latest research on data quality in the IoT, privacy, security, and trust issues in fog computing Fog Computing: Theory and Practice provides a platform for researchers, practitioners, and graduate students from computer science, computer engineering, and various other disciplines to gain a deep understanding of fog computing.

TinyML

TinyML
Author: Pete Warden
Publisher: O'Reilly Media
Total Pages: 504
Release: 2019-12-16
Genre: Computers
ISBN: 1492052019

Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size—small enough to run on a microcontroller. With this practical book you’ll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices. Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using machine learning, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary. Build a speech recognizer, a camera that detects people, and a magic wand that responds to gestures Work with Arduino and ultra-low-power microcontrollers Learn the essentials of ML and how to train your own models Train models to understand audio, image, and accelerometer data Explore TensorFlow Lite for Microcontrollers, Google’s toolkit for TinyML Debug applications and provide safeguards for privacy and security Optimize latency, energy usage, and model and binary size

Federated Learning

Federated Learning
Author: Qiang Yang
Publisher: Springer Nature
Total Pages: 291
Release: 2020-11-25
Genre: Computers
ISBN: 3030630765

This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applications. Privacy and incentive issues are the focus of this book. It is timely as federated learning is becoming popular after the release of the General Data Protection Regulation (GDPR). Since federated learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR. This book contains three main parts. Firstly, it introduces different privacy-preserving methods for protecting a federated learning model against different types of attacks such as data leakage and/or data poisoning. Secondly, the book presents incentive mechanisms which aim to encourage individuals to participate in the federated learning ecosystems. Last but not least, this book also describes how federated learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both the academia and the industry, who would like to learn about federated learning, practice its implementation, and apply it in their own business. Readers are expected to have some basic understanding of linear algebra, calculus, and neural network. Additionally, domain knowledge in FinTech and marketing would be helpful.”