Machine Learning and IoT

Machine Learning and IoT
Author: Shampa Sen
Publisher: CRC Press
Total Pages: 372
Release: 2018-07-04
Genre: Computers
ISBN: 1351029924

This book discusses some of the innumerable ways in which computational methods can be used to facilitate research in biology and medicine - from storing enormous amounts of biological data to solving complex biological problems and enhancing treatment of various grave diseases.

Machine Learning and IoT for Intelligent Systems and Smart Applications

Machine Learning and IoT for Intelligent Systems and Smart Applications
Author: Madhumathy P
Publisher: CRC Press
Total Pages: 243
Release: 2021-11-17
Genre: Computers
ISBN: 1000484963

The fusion of AI and IoT enables the systems to be predictive, prescriptive, and autonomous, and this convergence has evolved the nature of emerging applications from being assisted to augmented, and ultimately to autonomous intelligence. This book discusses algorithmic applications in the field of machine learning and IoT with pertinent applications. It further discusses challenges and future directions in the machine learning area and develops understanding of its role in technology, in terms of IoT security issues. Pertinent applications described include speech recognition, medical diagnosis, optimizations, predictions, and security aspects. Features: Focuses on algorithmic and practical parts of the artificial intelligence approaches in IoT applications. Discusses supervised and unsupervised machine learning for IoT data and devices. Presents an overview of the different algorithms related to Machine learning and IoT. Covers practical case studies on industrial and smart home automation. Includes implementation of AI from case studies in personal and industrial IoT. This book aims at Researchers and Graduate students in Computer Engineering, Networking Communications, Information Science Engineering, and Electrical Engineering.

Hands-On Artificial Intelligence for IoT

Hands-On Artificial Intelligence for IoT
Author: Amita Kapoor
Publisher: Packt Publishing Ltd
Total Pages: 382
Release: 2019-01-31
Genre: Computers
ISBN: 1788832760

Build smarter systems by combining artificial intelligence and the Internet of Things—two of the most talked about topics today Key FeaturesLeverage the power of Python libraries such as TensorFlow and Keras to work with real-time IoT dataProcess IoT data and predict outcomes in real time to build smart IoT modelsCover practical case studies on industrial IoT, smart cities, and home automationBook Description There are many applications that use data science and analytics to gain insights from terabytes of data. These apps, however, do not address the challenge of continually discovering patterns for IoT data. In Hands-On Artificial Intelligence for IoT, we cover various aspects of artificial intelligence (AI) and its implementation to make your IoT solutions smarter. This book starts by covering the process of gathering and preprocessing IoT data gathered from distributed sources. You will learn different AI techniques such as machine learning, deep learning, reinforcement learning, and natural language processing to build smart IoT systems. You will also leverage the power of AI to handle real-time data coming from wearable devices. As you progress through the book, techniques for building models that work with different kinds of data generated and consumed by IoT devices such as time series, images, and audio will be covered. Useful case studies on four major application areas of IoT solutions are a key focal point of this book. In the concluding chapters, you will leverage the power of widely used Python libraries, TensorFlow and Keras, to build different kinds of smart AI models. By the end of this book, you will be able to build smart AI-powered IoT apps with confidence. What you will learnApply different AI techniques including machine learning and deep learning using TensorFlow and KerasAccess and process data from various distributed sourcesPerform supervised and unsupervised machine learning for IoT dataImplement distributed processing of IoT data over Apache Spark using the MLLib and H2O.ai platformsForecast time-series data using deep learning methodsImplementing AI from case studies in Personal IoT, Industrial IoT, and Smart CitiesGain unique insights from data obtained from wearable devices and smart devicesWho this book is for If you are a data science professional or a machine learning developer looking to build smart systems for IoT, Hands-On Artificial Intelligence for IoT is for you. If you want to learn how popular artificial intelligence (AI) techniques can be used in the Internet of Things domain, this book will also be of benefit. A basic understanding of machine learning concepts will be required to get the best out of this book.

Introduction to IoT with Machine Learning and Image Processing using Raspberry Pi

Introduction to IoT with Machine Learning and Image Processing using Raspberry Pi
Author: Shrirang Ambaji Kulkarni
Publisher: CRC Press
Total Pages: 167
Release: 2020-08-16
Genre: Computers
ISBN: 1351006657

Machine Learning a branch of Artificial Intelligence is influencing the society, industry and academia at large. The adaptability of Python programming language to Machine Learning has increased its popularity further. Another technology on the horizon is Internet of Things (IoT). The present book tries to address IoT, Python and Machine Learning along with a small introduction to Image Processing. If you are a novice programmer or have just started exploring IoT or Machine Learning with Python, then this book is for you. Features: Raspberry Pi as IoT is described along with the procedure for installation and configuration. A simple introduction to Python Programming Language along with its popular library packages like NumPy, Pandas, SciPy and Matplotlib are dealt in an exhaustive manner along with relevant examples. Machine Learning along with Python Scikit-Learn library is explained to audience with an emphasis on supervised learning and classification. Image processing on IoT is introduced to the audience who love to apply Machine Learning algorithms to Images The book follows hands-on approach and provide a huge collection of Python programs.

Compact and Fast Machine Learning Accelerator for IoT Devices

Compact and Fast Machine Learning Accelerator for IoT Devices
Author: Hantao Huang
Publisher: Springer
Total Pages: 157
Release: 2018-12-07
Genre: Technology & Engineering
ISBN: 9811333238

This book presents the latest techniques for machine learning based data analytics on IoT edge devices. A comprehensive literature review on neural network compression and machine learning accelerator is presented from both algorithm level optimization and hardware architecture optimization. Coverage focuses on shallow and deep neural network with real applications on smart buildings. The authors also discuss hardware architecture design with coverage focusing on both CMOS based computing systems and the new emerging Resistive Random-Access Memory (RRAM) based systems. Detailed case studies such as indoor positioning, energy management and intrusion detection are also presented for smart buildings.

Deep Learning, Machine Learning and IoT in Biomedical and Health Informatics

Deep Learning, Machine Learning and IoT in Biomedical and Health Informatics
Author: Sujata Dash
Publisher: CRC Press
Total Pages: 407
Release: 2022-02-10
Genre: Computers
ISBN: 1000534057

Biomedical and Health Informatics is an important field that brings tremendous opportunities and helps address challenges due to an abundance of available biomedical data. This book examines and demonstrates state-of-the-art approaches for IoT and Machine Learning based biomedical and health related applications. This book aims to provide computational methods for accumulating, updating and changing knowledge in intelligent systems and particularly learning mechanisms that help us to induce knowledge from the data. It is helpful in cases where direct algorithmic solutions are unavailable, there is lack of formal models, or the knowledge about the application domain is inadequately defined. In the future IoT has the impending capability to change the way we work and live. These computing methods also play a significant role in design and optimization in diverse engineering disciplines. With the influence and the development of the IoT concept, the need for AI (artificial intelligence) techniques has become more significant than ever. The aim of these techniques is to accept imprecision, uncertainties and approximations to get a rapid solution. However, recent advancements in representation of intelligent IoTsystems generate a more intelligent and robust system providing a human interpretable, low-cost, and approximate solution. Intelligent IoT systems have demonstrated great performance to a variety of areas including big data analytics, time series, biomedical and health informatics. This book will be very beneficial for the new researchers and practitioners working in the biomedical and healthcare fields to quickly know the best performing methods. It will also be suitable for a wide range of readers who may not be scientists but who are also interested in the practice of such areas as medical image retrieval, brain image segmentation, among others. • Discusses deep learning, IoT, machine learning, and biomedical data analysis with broad coverage of basic scientific applications • Presents deep learning and the tremendous improvement in accuracy, robustness, and cross- language generalizability it has over conventional approaches • Discusses various techniques of IoT systems for healthcare data analytics • Provides state-of-the-art methods of deep learning, machine learning and IoT in biomedical and health informatics • Focuses more on the application of algorithms in various real life biomedical and engineering problems

Challenges and Opportunities for the Convergence of IoT, Big Data, and Cloud Computing

Challenges and Opportunities for the Convergence of IoT, Big Data, and Cloud Computing
Author: Velayutham, Sathiyamoorthi
Publisher: IGI Global
Total Pages: 350
Release: 2021-01-29
Genre: Computers
ISBN: 1799831132

In today’s market, emerging technologies are continually assisting in common workplace practices as companies and organizations search for innovative ways to solve modern issues that arise. Prevalent applications including internet of things, big data, and cloud computing all have noteworthy benefits, but issues remain when separately integrating them into the professional practices. Significant research is needed on converging these systems and leveraging each of their advantages in order to find solutions to real-time problems that still exist. Challenges and Opportunities for the Convergence of IoT, Big Data, and Cloud Computing is a pivotal reference source that provides vital research on the relation between these technologies and the impact they collectively have in solving real-world challenges. While highlighting topics such as cloud-based analytics, intelligent algorithms, and information security, this publication explores current issues that remain when attempting to implement these systems as well as the specific applications IoT, big data, and cloud computing have in various professional sectors. This book is ideally designed for academicians, researchers, developers, computer scientists, IT professionals, practitioners, scholars, students, and engineers seeking research on the integration of emerging technologies to solve modern societal issues.

IoT Machine Learning Applications in Telecom, Energy, and Agriculture

IoT Machine Learning Applications in Telecom, Energy, and Agriculture
Author: Puneet Mathur
Publisher: Apress
Total Pages: 284
Release: 2020-05-09
Genre: Computers
ISBN: 1484255496

Apply machine learning using the Internet of Things (IoT) in the agriculture, telecom, and energy domains with case studies. This book begins by covering how to set up the software and hardware components including the various sensors to implement the case studies in Python. The case study section starts with an examination of call drop with IoT in the telecoms industry, followed by a case study on energy audit and predictive maintenance for an industrial machine, and finally covers techniques to predict cash crop failure in agribusiness. The last section covers pitfalls to avoid while implementing machine learning and IoT in these domains. After reading this book, you will know how IoT and machine learning are used in the example domains and have practical case studies to use and extend. You will be able to create enterprise-scale applications using Raspberry Pi 3 B+ and Arduino Mega 2560 with Python. What You Will Learn Implement machine learning with IoT and solve problems in the telecom, agriculture, and energy sectors with PythonSet up and use industrial-grade IoT products, such as Modbus RS485 protocol devices, in practical scenariosDevelop solutions for commercial-grade IoT or IIoT projectsImplement case studies in machine learning with IoT from scratch Who This Book Is For Raspberry Pi and Arduino enthusiasts and data science and machine learning professionals.

Human Communication Technology

Human Communication Technology
Author: R. Anandan
Publisher: John Wiley & Sons
Total Pages: 498
Release: 2021-10-25
Genre: Computers
ISBN: 1119752159

HUMAN COMMUNICATION TECHNOLOGY A unique book explaining how perception, location, communication, cognition, computation, networking, propulsion, integration of federated Internet of Robotic Things (IoRT) and digital platforms are important components of new-generation IoRT applications through continuous, real-time interaction with the world. The 16 chapters in this book discuss new architectures, networking paradigms, trustworthy structures, and platforms for the integration of applications across various business and industrial domains that are needed for the emergence of intelligent things (static or mobile) in collaborative autonomous fleets. These new apps speed up the progress of paradigms of autonomous system design and the proliferation of the Internet of Robotic Things (IoRT). Collaborative robotic things can communicate with other things in the IoRT, learn independently, interact securely with the world, people, and other things, and acquire characteristics that make them self-maintaining, self-aware, self-healing, and fail-safe operational. Due to the ubiquitous nature of collaborative robotic things, the IoRT, which binds together the sensors and the objects of robotic things, is gaining popularity. Therefore, the information contained in this book will provide readers with a better understanding of this interdisciplinary field. Audience Researchers in various fields including computer science, IoT, artificial intelligence, machine learning, and big data analytics.

Big Data, IoT, and Machine Learning

Big Data, IoT, and Machine Learning
Author: Rashmi Agrawal
Publisher: CRC Press
Total Pages: 339
Release: 2020-07-29
Genre: Computers
ISBN: 1000098281

The idea behind this book is to simplify the journey of aspiring readers and researchers to understand Big Data, IoT and Machine Learning. It also includes various real-time/offline applications and case studies in the fields of engineering, computer science, information security and cloud computing using modern tools. This book consists of two sections: Section I contains the topics related to Applications of Machine Learning, and Section II addresses issues about Big Data, the Cloud and the Internet of Things. This brings all the related technologies into a single source so that undergraduate and postgraduate students, researchers, academicians and people in industry can easily understand them. Features Addresses the complete data science technologies workflow Explores basic and high-level concepts and services as a manual for those in the industry and at the same time can help beginners to understand both basic and advanced aspects of machine learning Covers data processing and security solutions in IoT and Big Data applications Offers adaptive, robust, scalable and reliable applications to develop solutions for day-to-day problems Presents security issues and data migration techniques of NoSQL databases