Machine Learning in Biotechnology and Life Sciences

Machine Learning in Biotechnology and Life Sciences
Author: Saleh Alkhalifa
Publisher: Packt Publishing Ltd
Total Pages: 408
Release: 2022-01-28
Genre: Mathematics
ISBN: 1801815674

Explore all the tools and templates needed for data scientists to drive success in their biotechnology careers with this comprehensive guide Key FeaturesLearn the applications of machine learning in biotechnology and life science sectorsDiscover exciting real-world applications of deep learning and natural language processingUnderstand the general process of deploying models to cloud platforms such as AWS and GCPBook Description The booming fields of biotechnology and life sciences have seen drastic changes over the last few years. With competition growing in every corner, companies around the globe are looking to data-driven methods such as machine learning to optimize processes and reduce costs. This book helps lab scientists, engineers, and managers to develop a data scientist's mindset by taking a hands-on approach to learning about the applications of machine learning to increase productivity and efficiency in no time. You'll start with a crash course in Python, SQL, and data science to develop and tune sophisticated models from scratch to automate processes and make predictions in the biotechnology and life sciences domain. As you advance, the book covers a number of advanced techniques in machine learning, deep learning, and natural language processing using real-world data. By the end of this machine learning book, you'll be able to build and deploy your own machine learning models to automate processes and make predictions using AWS and GCP. What you will learnGet started with Python programming and Structured Query Language (SQL)Develop a machine learning predictive model from scratch using PythonFine-tune deep learning models to optimize their performance for various tasksFind out how to deploy, evaluate, and monitor a model in the cloudUnderstand how to apply advanced techniques to real-world dataDiscover how to use key deep learning methods such as LSTMs and transformersWho this book is for This book is for data scientists and scientific professionals looking to transcend to the biotechnology domain. Scientific professionals who are already established within the pharmaceutical and biotechnology sectors will find this book useful. A basic understanding of Python programming and beginner-level background in data science conjunction is needed to get the most out of this book.

Deep Learning for the Life Sciences

Deep Learning for the Life Sciences
Author: Bharath Ramsundar
Publisher: O'Reilly Media
Total Pages: 236
Release: 2019-04-10
Genre: Science
ISBN: 1492039802

Deep learning has already achieved remarkable results in many fields. Now it’s making waves throughout the sciences broadly and the life sciences in particular. This practical book teaches developers and scientists how to use deep learning for genomics, chemistry, biophysics, microscopy, medical analysis, and other fields. Ideal for practicing developers and scientists ready to apply their skills to scientific applications such as biology, genetics, and drug discovery, this book introduces several deep network primitives. You’ll follow a case study on the problem of designing new therapeutics that ties together physics, chemistry, biology, and medicine—an example that represents one of science’s greatest challenges. Learn the basics of performing machine learning on molecular data Understand why deep learning is a powerful tool for genetics and genomics Apply deep learning to understand biophysical systems Get a brief introduction to machine learning with DeepChem Use deep learning to analyze microscopic images Analyze medical scans using deep learning techniques Learn about variational autoencoders and generative adversarial networks Interpret what your model is doing and how it’s working

Artificial Intelligence and Machine Learning in Healthcare

Artificial Intelligence and Machine Learning in Healthcare
Author: Ankur Saxena
Publisher: Springer Nature
Total Pages: 228
Release: 2021-05-06
Genre: Science
ISBN: 9811608113

This book reviews the application of artificial intelligence and machine learning in healthcare. It discusses integrating the principles of computer science, life science, and statistics incorporated into statistical models using existing data, discovering patterns in data to extract the information, and predicting the changes and diseases based on this data and models. The initial chapters of the book cover the practical applications of artificial intelligence for disease prognosis & management. Further, the role of artificial intelligence and machine learning is discussed with reference to specific diseases like diabetes mellitus, cancer, mycobacterium tuberculosis, and Covid-19. The chapters provide working examples on how different types of healthcare data can be used to develop models and predict diseases using machine learning and artificial intelligence. The book also touches upon precision medicine, personalized medicine, and transfer learning, with the real examples. Further, it also discusses the use of machine learning and artificial intelligence for visualization, prediction, detection, and diagnosis of Covid -19. This book is a valuable source of information for programmers, healthcare professionals, and researchers interested in understanding the applications of artificial intelligence and machine learning in healthcare.

Machine Learning and IoT

Machine Learning and IoT
Author: Shampa Sen
Publisher: CRC Press
Total Pages: 354
Release: 2018-07-02
Genre: Bioinformatics
ISBN: 9781138492691

This book discusses some of the innumerable ways in which computational methods can be used to facilitate research in biology and medicine - from storing enormous amounts of biological data to solving complex biological problems and enhancing treatment of various grave diseases.

Hands on Data Science for Biologists Using Python

Hands on Data Science for Biologists Using Python
Author: Yasha Hasija
Publisher: CRC Press
Total Pages: 299
Release: 2021-04-08
Genre: Computers
ISBN: 1000345483

Hands-on Data Science for Biologists using Python has been conceptualized to address the massive data handling needs of modern-day biologists. With the advent of high throughput technologies and consequent availability of omics data, biological science has become a data-intensive field. This hands-on textbook has been written with the inception of easing data analysis by providing an interactive, problem-based instructional approach in Python programming language. The book starts with an introduction to Python and steadily delves into scrupulous techniques of data handling, preprocessing, and visualization. The book concludes with machine learning algorithms and their applications in biological data science. Each topic has an intuitive explanation of concepts and is accompanied with biological examples. Features of this book: The book contains standard templates for data analysis using Python, suitable for beginners as well as advanced learners. This book shows working implementations of data handling and machine learning algorithms using real-life biological datasets and problems, such as gene expression analysis; disease prediction; image recognition; SNP association with phenotypes and diseases. Considering the importance of visualization for data interpretation, especially in biological systems, there is a dedicated chapter for the ease of data visualization and plotting. Every chapter is designed to be interactive and is accompanied with Jupyter notebook to prompt readers to practice in their local systems. Other avant-garde component of the book is the inclusion of a machine learning project, wherein various machine learning algorithms are applied for the identification of genes associated with age-related disorders. A systematic understanding of data analysis steps has always been an important element for biological research. This book is a readily accessible resource that can be used as a handbook for data analysis, as well as a platter of standard code templates for building models.

Biodefense in the Age of Synthetic Biology

Biodefense in the Age of Synthetic Biology
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
Total Pages: 189
Release: 2019-01-05
Genre: Technology & Engineering
ISBN: 0309465184

Scientific advances over the past several decades have accelerated the ability to engineer existing organisms and to potentially create novel ones not found in nature. Synthetic biology, which collectively refers to concepts, approaches, and tools that enable the modification or creation of biological organisms, is being pursued overwhelmingly for beneficial purposes ranging from reducing the burden of disease to improving agricultural yields to remediating pollution. Although the contributions synthetic biology can make in these and other areas hold great promise, it is also possible to imagine malicious uses that could threaten U.S. citizens and military personnel. Making informed decisions about how to address such concerns requires a realistic assessment of the capabilities that could be misused. Biodefense in the Age of Synthetic Biology explores and envisions potential misuses of synthetic biology. This report develops a framework to guide an assessment of the security concerns related to advances in synthetic biology, assesses the levels of concern warranted for such advances, and identifies options that could help mitigate those concerns.

PlantOmics: The Omics of Plant Science

PlantOmics: The Omics of Plant Science
Author: Debmalya Barh
Publisher: Springer
Total Pages: 839
Release: 2015-03-18
Genre: Science
ISBN: 8132221729

PlantOmics: The Omics of Plant Science provides a comprehensive account of the latest trends and developments of omics technologies or approaches and their applications in plant science. Thirty chapters written by 90 experts from 15 countries are included in this state-of-the-art book. Each chapter describes one topic/omics such as: omics in model plants, spectroscopy for plants, next generation sequencing, functional genomics, cyto-metagenomics, epigenomics, miRNAomics, proteomics, metabolomics, glycomics, lipidomics, secretomics, phenomics, cytomics, physiomics, signalomics, thiolomics, organelle omics, micro morphomics, microbiomics, cryobionomics, nanotechnology, pharmacogenomics, and computational systems biology for plants. It provides up to date information, technologies, and their applications that can be adopted and applied easily for deeper understanding plant biology and therefore will be helpful in developing the strategy for generating cost-effective superior plants for various purposes. In the last chapter, the editors have proposed several new areas in plant omics that may be explored in order to develop an integrated meta-omics strategy to ensure the world and earth’s health and related issues. This book will be a valuable resource to students and researchers in the field of cutting-edge plant omics.

Artificial Intelligence in Biotechnology

Artificial Intelligence in Biotechnology
Author: Preethi Kartan
Publisher: Delve Publishing
Total Pages:
Release: 2020-11
Genre:
ISBN: 9781774077856

World has seen rapid development in the field of Information technology and Biotechnology over a decade. New experimental technologies developed in biotechnology and data available made it possible to perform experiments easily in less time and cost. These experiments also generate huge amount of data that may overwhelm even the most data‐savvy researchers. Data generated during experimentation give lot of scope for companies that provide products and services in the field of biotechnology and new opportunities for researchers. This huge data may create challenges to the researches using low‐throughput methods to handle and analyse data. Artificial intelligence plays prominent role in analysing huge data available in a systematic way and represent analysed data in a meaning full way. In todays time it is practically not possible to carry out research in biotechnology without utilising data available in public and private databases and artificial intelligence to analyse data. This book describes advancements and application of AI in the field of biotechnology.

Artificial Intelligence in Healthcare

Artificial Intelligence in Healthcare
Author: Adam Bohr
Publisher: Academic Press
Total Pages: 385
Release: 2020-06-21
Genre: Computers
ISBN: 0128184396

Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data

Data Analysis for the Life Sciences with R

Data Analysis for the Life Sciences with R
Author: Rafael A. Irizarry
Publisher: CRC Press
Total Pages: 537
Release: 2016-10-04
Genre: Mathematics
ISBN: 1498775861

This book covers several of the statistical concepts and data analytic skills needed to succeed in data-driven life science research. The authors proceed from relatively basic concepts related to computed p-values to advanced topics related to analyzing highthroughput data. They include the R code that performs this analysis and connect the lines of code to the statistical and mathematical concepts explained.