Machine Learning For Spatial Environmental Data
Download Machine Learning For Spatial Environmental Data full books in PDF, epub, and Kindle. Read online free Machine Learning For Spatial Environmental Data ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Mikhail Kanevski |
Publisher | : EPFL Press |
Total Pages | : 444 |
Release | : 2009-06-09 |
Genre | : Science |
ISBN | : 9780849382376 |
Acompanyament de CD-RM conté MLO software, la guia d'MLO (pdf) i exemples de dades.
Author | : William W. Hsieh |
Publisher | : Cambridge University Press |
Total Pages | : 364 |
Release | : 2009-07-30 |
Genre | : Computers |
ISBN | : 0521791928 |
A graduate textbook that provides a unified treatment of machine learning methods and their applications in the environmental sciences.
Author | : Mikhail Kanevski |
Publisher | : CRC Press |
Total Pages | : 384 |
Release | : 2009-06-09 |
Genre | : Computers |
ISBN | : 0849382378 |
This book discusses machine learning algorithms, such as artificial neural networks of different architectures, statistical learning theory, and Support Vector Machines used for the classification and mapping of spatially distributed data. It presents basic geostatistical algorithms as well. The authors describe new trends in machine learning and their application to spatial data. The text also includes real case studies based on environmental and pollution data. It includes a CD-ROM with software that will allow both students and researchers to put the concepts to practice.
Author | : Hamid Reza Pourghasemi |
Publisher | : Elsevier |
Total Pages | : 800 |
Release | : 2019-01-18 |
Genre | : Science |
ISBN | : 0128156953 |
Spatial Modeling in GIS and R for Earth and Environmental Sciences offers an integrated approach to spatial modelling using both GIS and R. Given the importance of Geographical Information Systems and geostatistics across a variety of applications in Earth and Environmental Science, a clear link between GIS and open source software is essential for the study of spatial objects or phenomena that occur in the real world and facilitate problem-solving. Organized into clear sections on applications and using case studies, the book helps researchers to more quickly understand GIS data and formulate more complex conclusions. The book is the first reference to provide methods and applications for combining the use of R and GIS in modeling spatial processes. It is an essential tool for students and researchers in earth and environmental science, especially those looking to better utilize GIS and spatial modeling. - Offers a clear, interdisciplinary guide to serve researchers in a variety of fields, including hazards, land surveying, remote sensing, cartography, geophysics, geology, natural resources, environment and geography - Provides an overview, methods and case studies for each application - Expresses concepts and methods at an appropriate level for both students and new users to learn by example
Author | : Taesam Lee |
Publisher | : Springer Nature |
Total Pages | : 215 |
Release | : 2021-01-27 |
Genre | : Science |
ISBN | : 3030647773 |
This book provides a step-by-step methodology and derivation of deep learning algorithms as Long Short-Term Memory (LSTM) and Convolution Neural Network (CNN), especially for estimating parameters, with back-propagation as well as examples with real datasets of hydrometeorology (e.g. streamflow and temperature) and environmental science (e.g. water quality). Deep learning is known as part of machine learning methodology based on the artificial neural network. Increasing data availability and computing power enhance applications of deep learning to hydrometeorological and environmental fields. However, books that specifically focus on applications to these fields are limited. Most of deep learning books demonstrate theoretical backgrounds and mathematics. However, examples with real data and step-by-step explanations to understand the algorithms in hydrometeorology and environmental science are very rare. This book focuses on the explanation of deep learning techniques and their applications to hydrometeorological and environmental studies with real hydrological and environmental data. This book covers the major deep learning algorithms as Long Short-Term Memory (LSTM) and Convolution Neural Network (CNN) as well as the conventional artificial neural network model.
Author | : Sue Ellen Haupt |
Publisher | : Springer Science & Business Media |
Total Pages | : 418 |
Release | : 2008-11-28 |
Genre | : Science |
ISBN | : 1402091192 |
How can environmental scientists and engineers use the increasing amount of available data to enhance our understanding of planet Earth, its systems and processes? This book describes various potential approaches based on artificial intelligence (AI) techniques, including neural networks, decision trees, genetic algorithms and fuzzy logic. Part I contains a series of tutorials describing the methods and the important considerations in applying them. In Part II, many practical examples illustrate the power of these techniques on actual environmental problems. International experts bring to life ways to apply AI to problems in the environmental sciences. While one culture entwines ideas with a thread, another links them with a red line. Thus, a “red thread“ ties the book together, weaving a tapestry that pictures the ‘natural’ data-driven AI methods in the light of the more traditional modeling techniques, and demonstrating the power of these data-based methods.
Author | : Alan H. Fielding |
Publisher | : Springer Science & Business Media |
Total Pages | : 265 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 1461552893 |
This is the first text aimed at introducing machine learning methods to a readership of professional ecologists. All but one of the chapters have been written by ecologists and biologists who highlight the application of a particular method to a particular class of problem.
Author | : Adegbola Ojo |
Publisher | : CRC Press |
Total Pages | : 269 |
Release | : 2020-12-29 |
Genre | : Science |
ISBN | : 1000289370 |
Since the emergence of contemporary area classifications, population geography has witnessed a renaissance in the area of policy related spatial analysis. Area classifications subsume geodemographic systems which often use data mining techniques and machine learning algorithms to simplify large and complex bodies of information about people and the places in which they live, work and undertake other social activities. Outputs developed from the grouping of small geographical areas on the basis of multi- dimensional data have proved beneficial particularly for decision-making in the commercial sectors of a vast number of countries in the northern hemisphere. This book argues that small area classifications offer countries in the Global South a distinct opportunity to address human population policy related challenges in novel ways using area-based initiatives and evidence-based methods. This book exposes researchers, practitioners, and students to small area segmentation techniques for understanding, interpreting, and visualizing the configuration, dynamics, and correlates of development policy challenges at small spatial scales. It presents strategic and operational responses to these challenges in cost effective ways. Using two developing countries as case studies, the book connects new transdisciplinary ways of thinking about social and spatial inequalities from a scientific perspective with GIS and Data Science. This offers all stakeholders a framework for engaging in practical dialogue on development policy within urban and rural settings, based on real-world examples. Features: The first book to address the huge potential of small area segmentation for sustainable development, combining explanations of concepts, a range of techniques, and current applications. Includes case studies focused on core challenges that confront developing countries and provides thorough analytical appraisal of issues that resonate with audiences from the Global South. Combines GIS and machine learning methods for studying interrelated disciplines such as Demography, Urban Science, Sociology, Statistics, Sustainable Development and Public Policy. Uses a multi-method approach and analytical techniques of primary and secondary data. Embraces a balanced, chronological, and well sequenced presentation of information, which is very practical for readers.
Author | : Zhe Jiang |
Publisher | : Springer |
Total Pages | : 138 |
Release | : 2017-07-13 |
Genre | : Computers |
ISBN | : 3319601954 |
Emerging Spatial Big Data (SBD) has transformative potential in solving many grand societal challenges such as water resource management, food security, disaster response, and transportation. However, significant computational challenges exist in analyzing SBD due to the unique spatial characteristics including spatial autocorrelation, anisotropy, heterogeneity, multiple scales and resolutions which is illustrated in this book. This book also discusses current techniques for, spatial big data science with a particular focus on classification techniques for earth observation imagery big data. Specifically, the authors introduce several recent spatial classification techniques, such as spatial decision trees and spatial ensemble learning. Several potential future research directions are also discussed. This book targets an interdisciplinary audience including computer scientists, practitioners and researchers working in the field of data mining, big data, as well as domain scientists working in earth science (e.g., hydrology, disaster), public safety and public health. Advanced level students in computer science will also find this book useful as a reference.
Author | : Fabian Guignard |
Publisher | : Springer Nature |
Total Pages | : 170 |
Release | : 2022-03-12 |
Genre | : Science |
ISBN | : 3030952312 |
The gathering and storage of data indexed in space and time are experiencing unprecedented growth, demanding for advanced and adapted tools to analyse them. This thesis deals with the exploration and modelling of complex high-frequency and non-stationary spatio-temporal data. It proposes an efficient framework in modelling with machine learning algorithms spatio-temporal fields measured on irregular monitoring networks, accounting for high dimensional input space and large data sets. The uncertainty quantification is enabled by specifying this framework with the extreme learning machine, a particular type of artificial neural network for which analytical results, variance estimation and confidence intervals are developed. Particular attention is also paid to a highly versatile exploratory data analysis tool based on information theory, the Fisher-Shannon analysis, which can be used to assess the complexity of distributional properties of temporal, spatial and spatio-temporal data sets. Examples of the proposed methodologies are concentrated on data from environmental sciences, with an emphasis on wind speed modelling in complex mountainous terrain and the resulting renewable energy assessment. The contributions of this thesis can find a large number of applications in several research domains where exploration, understanding, clustering, interpolation and forecasting of complex phenomena are of utmost importance.