Machine Learning for Kids

Machine Learning for Kids
Author: Dale Lane
Publisher: No Starch Press
Total Pages: 290
Release: 2021-01-19
Genre: Computers
ISBN: 1718500572

A hands-on, application-based introduction to machine learning and artificial intelligence (AI) that guides young readers through creating compelling AI-powered games and applications using the Scratch programming language. Machine learning (also known as ML) is one of the building blocks of AI, or artificial intelligence. AI is based on the idea that computers can learn on their own, with your help. Machine Learning for Kids will introduce you to machine learning, painlessly. With this book and its free, Scratch-based, award-winning companion website, you'll see how easy it is to add machine learning to your own projects. You don't even need to know how to code! As you work through the book you'll discover how machine learning systems can be taught to recognize text, images, numbers, and sounds, and how to train your models to improve their accuracy. You'll turn your models into fun computer games and apps, and see what happens when they get confused by bad data. You'll build 13 projects step-by-step from the ground up, including: • Rock, Paper, Scissors game that recognizes your hand shapes • An app that recommends movies based on other movies that you like • A computer character that reacts to insults and compliments • An interactive virtual assistant (like Siri or Alexa) that obeys commands • An AI version of Pac-Man, with a smart character that knows how to avoid ghosts NOTE: This book includes a Scratch tutorial for beginners, and step-by-step instructions for every project. Ages 12+

Revolutionizing Education in the Age of AI and Machine Learning

Revolutionizing Education in the Age of AI and Machine Learning
Author: Habib, Maki K.
Publisher: IGI Global
Total Pages: 278
Release: 2019-09-15
Genre: Education
ISBN: 1522577947

Artificial Intelligence (AI) serves as a catalyst for transformation in the field of digital teaching and learning by introducing novel solutions to revolutionize all dimensions of the educational process, leading to individualized learning experiences, teachers playing a greater role as mentors, and the automation of all administrative processes linked to education. AI and machine learning are already contributing to and are expected to improve the quality of the educational process by providing advantages such as personalized and interactive tutoring with the ability to adjust the content and the learning pace of each individual student while assessing their performance and providing feedback. These shifts in the educational paradigm have a profound impact on the quality and the way we live, interact with each other, and define our values. Thus, there is a need for an earnest inquiry into the cultural repercussions of this phenomenon that extends beyond superficial analyses of AI-based applications in education. Revolutionizing Education in the Age of AI and Machine Learning addresses the need for a scholarly exploration of the cultural and social impacts of the rapid expansion of artificial intelligence in the field of education including potential consequences these impacts could have on culture, social relations, and values. The content within this publication covers such topics as AI and tutoring, role of teachers, physical education and sports, interactive E-learning and virtual laboratories, adaptive curricula development, support critical thinking, and augmented intelligence and it is designed for educators, curriculum developers, instructional designers, educational software developers, education consultants, academicians, administrators, researchers, and professionals.

A Machine Learning, Artificial Intelligence Approach to Institutional Effectiveness in Higher Education

A Machine Learning, Artificial Intelligence Approach to Institutional Effectiveness in Higher Education
Author: John N. Moye Ph.D.
Publisher: Emerald Group Publishing
Total Pages: 200
Release: 2019-07-29
Genre: Education
ISBN: 1789739012

This book presents a practical, effective, and systematic approach to the measurement, assessment, and sensemaking of institutional performance. Included are strategies to measure and assess the performance of Curriculum, Learning, Instruction, Support Services, and Program Feasibility as well as a meaningful Environmental Scanning method.

Applications of Machine Learning and Artificial Intelligence in Education

Applications of Machine Learning and Artificial Intelligence in Education
Author: Seda Khadimally
Publisher: Information Science Reference
Total Pages: 300
Release: 2021
Genre: Artificial intelligence
ISBN: 9781799877769

Focuses on the parameters of remote learning, machine learning, deep learning, and artificial intelligence under 21st-century learning and instructional contexts. Topics covered include data coding and social networking technology.

Machine Learning with TensorFlow, Second Edition

Machine Learning with TensorFlow, Second Edition
Author: Mattmann A. Chris
Publisher: Manning Publications
Total Pages: 454
Release: 2021-02-02
Genre: Computers
ISBN: 1617297712

Updated with new code, new projects, and new chapters, Machine Learning with TensorFlow, Second Edition gives readers a solid foundation in machine-learning concepts and the TensorFlow library. Summary Updated with new code, new projects, and new chapters, Machine Learning with TensorFlow, Second Edition gives readers a solid foundation in machine-learning concepts and the TensorFlow library. Written by NASA JPL Deputy CTO and Principal Data Scientist Chris Mattmann, all examples are accompanied by downloadable Jupyter Notebooks for a hands-on experience coding TensorFlow with Python. New and revised content expands coverage of core machine learning algorithms, and advancements in neural networks such as VGG-Face facial identification classifiers and deep speech classifiers. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Supercharge your data analysis with machine learning! ML algorithms automatically improve as they process data, so results get better over time. You don’t have to be a mathematician to use ML: Tools like Google’s TensorFlow library help with complex calculations so you can focus on getting the answers you need. About the book Machine Learning with TensorFlow, Second Edition is a fully revised guide to building machine learning models using Python and TensorFlow. You’ll apply core ML concepts to real-world challenges, such as sentiment analysis, text classification, and image recognition. Hands-on examples illustrate neural network techniques for deep speech processing, facial identification, and auto-encoding with CIFAR-10. What's inside Machine Learning with TensorFlow Choosing the best ML approaches Visualizing algorithms with TensorBoard Sharing results with collaborators Running models in Docker About the reader Requires intermediate Python skills and knowledge of general algebraic concepts like vectors and matrices. Examples use the super-stable 1.15.x branch of TensorFlow and TensorFlow 2.x. About the author Chris Mattmann is the Division Manager of the Artificial Intelligence, Analytics, and Innovation Organization at NASA Jet Propulsion Lab. The first edition of this book was written by Nishant Shukla with Kenneth Fricklas. Table of Contents PART 1 - YOUR MACHINE-LEARNING RIG 1 A machine-learning odyssey 2 TensorFlow essentials PART 2 - CORE LEARNING ALGORITHMS 3 Linear regression and beyond 4 Using regression for call-center volume prediction 5 A gentle introduction to classification 6 Sentiment classification: Large movie-review dataset 7 Automatically clustering data 8 Inferring user activity from Android accelerometer data 9 Hidden Markov models 10 Part-of-speech tagging and word-sense disambiguation PART 3 - THE NEURAL NETWORK PARADIGM 11 A peek into autoencoders 12 Applying autoencoders: The CIFAR-10 image dataset 13 Reinforcement learning 14 Convolutional neural networks 15 Building a real-world CNN: VGG-Face ad VGG-Face Lite 16 Recurrent neural networks 17 LSTMs and automatic speech recognition 18 Sequence-to-sequence models for chatbots 19 Utility landscape

Machine Learning

Machine Learning
Author: Hamed Farhadi
Publisher: BoD – Books on Demand
Total Pages: 231
Release: 2018-09-19
Genre: Computers
ISBN: 1789237521

The volume of data that is generated, stored, and communicated across different industrial sections, business units, and scientific research communities has been rapidly expanding. The recent developments in cellular telecommunications and distributed/parallel computation technology have enabled real-time collection and processing of the generated data across different sections. On the one hand, the internet of things (IoT) enabled by cellular telecommunication industry connects various types of sensors that can collect heterogeneous data. On the other hand, the recent advances in computational capabilities such as parallel processing in graphical processing units (GPUs) and distributed processing over cloud computing clusters enabled the processing of a vast amount of data. There has been a vital need to discover important patterns and infer trends from a large volume of data (so-called Big Data) to empower data-driven decision-making processes. Tools and techniques have been developed in machine learning to draw insightful conclusions from available data in a structured and automated fashion. Machine learning algorithms are based on concepts and tools developed in several fields including statistics, artificial intelligence, information theory, cognitive science, and control theory. The recent advances in machine learning have had a broad range of applications in different scientific disciplines. This book covers recent advances of machine learning techniques in a broad range of applications in smart cities, automated industry, and emerging businesses.

Machine Learning and Human Intelligence

Machine Learning and Human Intelligence
Author: Rosemary Luckin
Publisher: UCL Institute of Education Press (University College London Institute of Education Press)
Total Pages: 0
Release: 2018
Genre: Artificial intelligence
ISBN: 9781782772514

Intelligence is at the heart of what makes us human, but the methods we use for identifying, talking about and valuing human intelligence are impoverished. We invest artificial intelligence (AI) with qualities it does not have and, in so doing, risk losing the capacity for education to pass on the emotional, collaborative, sensory and self-effective aspects of human intelligence that define us. To address this, Rosemary Luckin--leading expert in the application of AI in education - proposes a framework for understanding the complexity of human intelligence. She identifies the comparative limitation of AI when analyzed using the same framework, and offers clear-sighted recommendations for how educators can draw on what AI does best to nurture and expand our human capabilities.

Artificial Intelligence in Education

Artificial Intelligence in Education
Author: Wayne Holmes
Publisher:
Total Pages: 244
Release: 2019-02-28
Genre: Computers
ISBN: 9781794293700

"The landscape for education has been rapidly changing in the last years: demographic changes affecting the makeup of families, multiple school options available to children, wealth disparities, the global economy demanding new skills from workers, and continued breakthroughs in technology are some of the factors impacting education. Given these changes, how can schools continue to prepare students for the future? In a world where information is readily available online, how can schools continue to be relevant? The emergence of Artificial Intelligence (AI) has exacerbated the need to have these conversations. Its impact on education and the multiple possibilities that it offers are putting pressure on educational leaders to reformulate the school curriculum and the channels to deliver it. The book "Artificial Intelligence in Education, Promises and Implications for Teaching and Learning" by the Center for Curriculum Redesign immerses the reader in a discussion on what to teach students in the era of AI and examines how AI is already demanding much needed updates to the school curriculum, including modernizing its content, focusing on core concepts, and embedding interdisciplinary themes and competencies with the end goal of making learning more enjoyable and useful in students' lives. The second part of the book dives into the history of AI in education, its techniques and applications -including the way AI can help teachers be more effective, and finishes on a reflection about the social aspects of AI. This book is a must-read for educators and policy-makers who want to prepare schools to face the uncertainties of the future and keep them relevant." --Amada Torres, VP, Studies, Insights, and Research, National Association of Independent School (NAIS) "The rapid advances in technology in recent decades have already brought about substantial changes in education, opening up new opportunities to teach and learn anywhere anytime and providing new tools and methods to improve learning outcomes and support innovative teaching and learning.Research into artificial intelligence and machine learning in education goes back to the late 1970s. Artificial intelligence methods were generally employed in two ways: to design and facilitate interactive learning environments that would support learning by doing, and to design and implement tutoring systems by adapting instructions with respect to the students' knowledge state.But this is just the beginning. As Artificial Intelligence in Education shows, AI is increasingly used in education and learning contexts. The collision of three areas - data, computation and education - is set to have far-reaching consequences, raising fundamental questions about the nature of education: what is taught and how it is taught. Artificial Intelligence in Education is an important, if at times disturbing, contribution to the debate on AI and provides a detailed analysis on how it may affect the way teachers and students engage in education. The book describes how artificial intelligence may impact on curriculum design, on the individualisation of learning, and on assessment, offering some tantalising glimpses into the future (the end of exams, your very own lifelong learning companion) while not falling victim to tech-hype. The enormous ethical, technical and pedagogical challenges ahead are spelt out, and there is a real risk that the rapid advances in artificial intelligence products and services will outstrip education systems' capacity to understand, manage and integrate them appropriately. As the book concludes: "We can either leave it to others (the computer scientists, AI engineers and big tech companies) to decide how artificial intelligence in education unfolds, or we can engage in productive dialogue."I commend this book to anyone concerned with the future of education in a digital world." --Marc Durando, Executive Director, European Schoolnet

Teaching Machines

Teaching Machines
Author: Audrey Watters
Publisher: MIT Press
Total Pages: 325
Release: 2023-02-07
Genre: Education
ISBN: 026254606X

How ed tech was born: Twentieth-century teaching machines--from Sidney Pressey's mechanized test-giver to B. F. Skinner's behaviorist bell-ringing box. Contrary to popular belief, ed tech did not begin with videos on the internet. The idea of technology that would allow students to "go at their own pace" did not originate in Silicon Valley. In Teaching Machines, education writer Audrey Watters offers a lively history of predigital educational technology, from Sidney Pressey's mechanized positive-reinforcement provider to B. F. Skinner's behaviorist bell-ringing box. Watters shows that these machines and the pedagogy that accompanied them sprang from ideas--bite-sized content, individualized instruction--that had legs and were later picked up by textbook publishers and early advocates for computerized learning. Watters pays particular attention to the role of the media--newspapers, magazines, television, and film--in shaping people's perceptions of teaching machines as well as the psychological theories underpinning them. She considers these machines in the context of education reform, the political reverberations of Sputnik, and the rise of the testing and textbook industries. She chronicles Skinner's attempts to bring his teaching machines to market, culminating in the famous behaviorist's efforts to launch Didak 101, the "pre-verbal" machine that taught spelling. (Alternate names proposed by Skinner include "Autodidak," "Instructomat," and "Autostructor.") Telling these somewhat cautionary tales, Watters challenges what she calls "the teleology of ed tech"--the idea that not only is computerized education inevitable, but technological progress is the sole driver of events.

Teaching Machines

Teaching Machines
Author: Bill Ferster
Publisher: JHU Press
Total Pages: 216
Release: 2014-11-17
Genre: Education
ISBN: 1421415402

Technology promises to make learning better, cheaper, faster—but rarely has it kept that promise. The allure of educational technology is easy to understand. Classroom instruction is an expensive and time-consuming process fraught with contradictory theories and frustratingly uneven results. Educators, inspired by machines’ contributions to modern life, have been using technology to facilitate teaching for centuries. In Teaching Machines, Bill Ferster examines past attempts to automate instruction from the earliest use of the postal service for distance education to the current maelstrom surrounding Massive Open Online Courses. He tells the stories of the entrepreneurs and visionaries who, beginning in the colonial era, developed and promoted various instructional technologies. Ferster touches on a wide range of attempts to enhance the classroom experience with machines, from hornbooks, the Chautauqua movement, and correspondence courses to B. F. Skinner’s teaching machine, intelligent tutoring systems, and eLearning. The famed progressive teachers, researchers, and administrators that the book highlights often overcame substantial hurdles to implement their ideas, but not all of them succeeded in improving the quality of education. Teaching Machines provides invaluable new insight into our current debate over the efficacy of educational technology.