Information Management and Machine Intelligence

Information Management and Machine Intelligence
Author: Dinesh Goyal
Publisher: Springer
Total Pages: 677
Release: 2021-09-18
Genre: Technology & Engineering
ISBN: 9789811549380

This book features selected papers presented at the International Conference on Information Management and Machine Intelligence (ICIMMI 2019), held at the Poornima Institute of Engineering & Technology, Jaipur, Rajasthan, India, on December 14–15, 2019. It covers a range of topics, including data analytics; AI; machine and deep learning; information management, security, processing techniques and interpretation; applications of artificial intelligence in soft computing and pattern recognition; cloud-based applications for machine learning; application of IoT in power distribution systems; as well as wireless sensor networks and adaptive wireless communication.

Machine Learning Models and Algorithms for Big Data Classification

Machine Learning Models and Algorithms for Big Data Classification
Author: Shan Suthaharan
Publisher: Springer
Total Pages: 364
Release: 2015-10-20
Genre: Business & Economics
ISBN: 1489976418

This book presents machine learning models and algorithms to address big data classification problems. Existing machine learning techniques like the decision tree (a hierarchical approach), random forest (an ensemble hierarchical approach), and deep learning (a layered approach) are highly suitable for the system that can handle such problems. This book helps readers, especially students and newcomers to the field of big data and machine learning, to gain a quick understanding of the techniques and technologies; therefore, the theory, examples, and programs (Matlab and R) presented in this book have been simplified, hardcoded, repeated, or spaced for improvements. They provide vehicles to test and understand the complicated concepts of various topics in the field. It is expected that the readers adopt these programs to experiment with the examples, and then modify or write their own programs toward advancing their knowledge for solving more complex and challenging problems. The presentation format of this book focuses on simplicity, readability, and dependability so that both undergraduate and graduate students as well as new researchers, developers, and practitioners in this field can easily trust and grasp the concepts, and learn them effectively. It has been written to reduce the mathematical complexity and help the vast majority of readers to understand the topics and get interested in the field. This book consists of four parts, with the total of 14 chapters. The first part mainly focuses on the topics that are needed to help analyze and understand data and big data. The second part covers the topics that can explain the systems required for processing big data. The third part presents the topics required to understand and select machine learning techniques to classify big data. Finally, the fourth part concentrates on the topics that explain the scaling-up machine learning, an important solution for modern big data problems.

Data Classification

Data Classification
Author: Charu C. Aggarwal
Publisher: CRC Press
Total Pages: 710
Release: 2014-07-25
Genre: Business & Economics
ISBN: 1498760589

Comprehensive Coverage of the Entire Area of ClassificationResearch on the problem of classification tends to be fragmented across such areas as pattern recognition, database, data mining, and machine learning. Addressing the work of these different communities in a unified way, Data Classification: Algorithms and Applications explores the underlyi

Big Data, Cloud and Applications

Big Data, Cloud and Applications
Author: Youness Tabii
Publisher: Springer
Total Pages: 561
Release: 2018-08-13
Genre: Computers
ISBN: 3319962922

This book constitutes the thoroughly refereed proceedings of the Third International Conference on Big Data, Cloud and Applications, BDCA 2018, held in Kenitra, Morocco, in April 2018.The 45 revised full papers presented in this book were carefully selected from 99 submissions with a thorough double-blind review process. They focus on the following topics: big data, cloud computing, machine learning, deep learning, data analysis, neural networks, information system and social media, image processing and applications, and natural language processing.

Big Data, Machine Learning, and Applications

Big Data, Machine Learning, and Applications
Author: Malaya Dutta Borah
Publisher: Springer Nature
Total Pages: 758
Release: 2024-01-06
Genre: Computers
ISBN: 9819934818

This book constitutes refereed proceedings of the Second International Conference on Big Data, Machine Learning, and Applications, BigDML 2021. The volume focuses on topics such as computing methodology; machine learning; artificial intelligence; information systems; security and privacy. This volume will benefit research scholars, academicians, and industrial people who work on data storage and machine learning.

Handbook of Research on Innovations and Applications of AI, IoT, and Cognitive Technologies

Handbook of Research on Innovations and Applications of AI, IoT, and Cognitive Technologies
Author: Zhao, Jingyuan
Publisher: IGI Global
Total Pages: 570
Release: 2021-06-25
Genre: Computers
ISBN: 1799868729

Recently, artificial intelligence (AI), the internet of things (IoT), and cognitive technologies have successfully been applied to various research domains, including computer vision, natural language processing, voice recognition, and more. In addition, AI with IoT has made a significant breakthrough and a shift in technical direction to achieve high efficiency and adaptability in a variety of new applications. On the other hand, network design and optimization for AI applications addresses a complementary topic, namely the support of AI-based systems through novel networking techniques, including new architectures, as well as performance models for IoT systems. IoT has paved the way to a plethora of new application domains, at the same time posing several challenges as a multitude of devices, protocols, communication channels, architectures, and middleware exist. Big data generated by these devices calls for advanced learning and data mining techniques to effectively understand, learn, and reason with this volume of information, such as cognitive technologies. Cognitive technologies play a major role in developing successful cognitive systems which mimic “cognitive” functions associated with human intelligence, such as “learning” and “problem solving.” Thus, there is a continuing demand for recent research in these two linked fields. The Handbook of Research on Innovations and Applications of AI, IoT, and Cognitive Technologies discusses the latest innovations and applications of AI, IoT, and cognitive-based smart systems. The chapters cover the intersection of these three fields in emerging and developed economies in terms of their respective development situation, public policies, technologies and intellectual capital, innovation systems, competition and strategies, marketing and growth capability, and governance and relegation models. These applications span areas such as healthcare, security and privacy, industrial systems, multidisciplinary sciences, and more. This book is ideal for technologists, IT specialists, policymakers, government officials, academics, students, and practitioners interested in the experiences of innovations and applications of AI, IoT, and cognitive technologies.

Big Data Analytics in Genomics

Big Data Analytics in Genomics
Author: Ka-Chun Wong
Publisher: Springer
Total Pages: 426
Release: 2016-10-24
Genre: Computers
ISBN: 3319412795

This contributed volume explores the emerging intersection between big data analytics and genomics. Recent sequencing technologies have enabled high-throughput sequencing data generation for genomics resulting in several international projects which have led to massive genomic data accumulation at an unprecedented pace. To reveal novel genomic insights from this data within a reasonable time frame, traditional data analysis methods may not be sufficient or scalable, forcing the need for big data analytics to be developed for genomics. The computational methods addressed in the book are intended to tackle crucial biological questions using big data, and are appropriate for either newcomers or veterans in the field.This volume offers thirteen peer-reviewed contributions, written by international leading experts from different regions, representing Argentina, Brazil, China, France, Germany, Hong Kong, India, Japan, Spain, and the USA. In particular, the book surveys three main areas: statistical analytics, computational analytics, and cancer genome analytics. Sample topics covered include: statistical methods for integrative analysis of genomic data, computation methods for protein function prediction, and perspectives on machine learning techniques in big data mining of cancer. Self-contained and suitable for graduate students, this book is also designed for bioinformaticians, computational biologists, and researchers in communities ranging from genomics, big data, molecular genetics, data mining, biostatistics, biomedical science, cancer research, medical research, and biology to machine learning and computer science. Readers will find this volume to be an essential read for appreciating the role of big data in genomics, making this an invaluable resource for stimulating further research on the topic.

Machine Learning in Cancer Research With Applications in Colon Cancer and Big Data Analysis

Machine Learning in Cancer Research With Applications in Colon Cancer and Big Data Analysis
Author: Lu, Zhongyu
Publisher: IGI Global
Total Pages: 263
Release: 2021-05-28
Genre: Medical
ISBN: 179987317X

Cancer continues to be a growing problem as it is the foremost cause of death worldwide, killing millions of people each year. The number of people battling cancer continues to increase, owing to different reasons, such as lifestyle choices. Clinically, determining the cause of cancer is very challenging and often inaccurate. Incorporating efficient and accurate algorithms to detect cancer cases is becoming increasingly beneficial for scientists in computer science and healthcare, as well as a long-term benefit for doctors, patients, clinic practitioners, and more. Specifically, an automation of computation in machine learning could be a solution in the next generation of big data science technology. Machine Learning in Cancer Research With Applications in Colon Cancer and Big Data Analysis presents algorithms that have been developed to evaluate big data approaches and cancer research. The chapters include artificial intelligence and machine learning approaches, as well as case studies to solve the predictive issues in colon cancer research. This book includes concepts and techniques used to run tasks in an automated manner with the intent to improve better accuracy in comparison with previous studies and methods. This book also covers the processes of research design, development, and outcome analytics in this field. Doctors, IT consultants, IT specialists, medical software professionals, data scientists, researchers, computer scientists, healthcare practitioners, academicians, and students can benefit from this critical resource.

Machine Learning for Computer and Cyber Security

Machine Learning for Computer and Cyber Security
Author: Brij B. Gupta
Publisher: CRC Press
Total Pages: 367
Release: 2019-02-05
Genre: Computers
ISBN: 0429995725

While Computer Security is a broader term which incorporates technologies, protocols, standards and policies to ensure the security of the computing systems including the computer hardware, software and the information stored in it, Cyber Security is a specific, growing field to protect computer networks (offline and online) from unauthorized access, botnets, phishing scams, etc. Machine learning is a branch of Computer Science which enables computing machines to adopt new behaviors on the basis of observable and verifiable data and information. It can be applied to ensure the security of the computers and the information by detecting anomalies using data mining and other such techniques. This book will be an invaluable resource to understand the importance of machine learning and data mining in establishing computer and cyber security. It emphasizes important security aspects associated with computer and cyber security along with the analysis of machine learning and data mining based solutions. The book also highlights the future research domains in which these solutions can be applied. Furthermore, it caters to the needs of IT professionals, researchers, faculty members, scientists, graduate students, research scholars and software developers who seek to carry out research and develop combating solutions in the area of cyber security using machine learning based approaches. It is an extensive source of information for the readers belonging to the field of Computer Science and Engineering, and Cyber Security professionals. Key Features: This book contains examples and illustrations to demonstrate the principles, algorithms, challenges and applications of machine learning and data mining for computer and cyber security. It showcases important security aspects and current trends in the field. It provides an insight of the future research directions in the field. Contents of this book help to prepare the students for exercising better defense in terms of understanding the motivation of the attackers and how to deal with and mitigate the situation using machine learning based approaches in better manner.