Machine Learning Animated
Download Machine Learning Animated full books in PDF, epub, and Kindle. Read online free Machine Learning Animated ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Mark Liu |
Publisher | : CRC Press |
Total Pages | : 465 |
Release | : 2023-10-30 |
Genre | : Computers |
ISBN | : 1000964779 |
The release of ChatGPT has kicked off an arms race in Machine Learning (ML), however ML has also been described as a black box and very hard to understand. Machine Learning, Animated eases you into basic ML concepts and summarizes the learning process in three words: initialize, adjust and repeat. This is illustrated step by step with animation to show how machines learn: from initial parameter values to adjusting each step, to the final converged parameters and predictions. This book teaches readers to create their own neural networks with dense and convolutional layers, and use them to make binary and multi-category classifications. Readers will learn how to build deep learning game strategies and combine this with reinforcement learning, witnessing AI achieve super-human performance in Atari games such as Breakout, Space Invaders, Seaquest and Beam Rider. Written in a clear and concise style, illustrated with animations and images, this book is particularly appealing to readers with no background in computer science, mathematics or statistics. Access the book's repository at: https://github.com/markhliu/MLA
Author | : Moolchand Sharma |
Publisher | : CRC Press |
Total Pages | : 0 |
Release | : 2024-10-04 |
Genre | : Computers |
ISBN | : 9781032139302 |
The text discusses the core concepts and principles of deep learning in gaming and animation with applications in a single volume. It will be a useful reference text for graduate students, and professionals in diverse areas such as electrical engineering, electronics and communication engineering, computer science, gaming and animation.
Author | : Jon Krohn |
Publisher | : Addison-Wesley Professional |
Total Pages | : 725 |
Release | : 2019-08-05 |
Genre | : Computers |
ISBN | : 0135121728 |
"The authors’ clear visual style provides a comprehensive look at what’s currently possible with artificial neural networks as well as a glimpse of the magic that’s to come." – Tim Urban, author of Wait But Why Fully Practical, Insightful Guide to Modern Deep Learning Deep learning is transforming software, facilitating powerful new artificial intelligence capabilities, and driving unprecedented algorithm performance. Deep Learning Illustrated is uniquely intuitive and offers a complete introduction to the discipline’s techniques. Packed with full-color figures and easy-to-follow code, it sweeps away the complexity of building deep learning models, making the subject approachable and fun to learn. World-class instructor and practitioner Jon Krohn–with visionary content from Grant Beyleveld and beautiful illustrations by Aglaé Bassens–presents straightforward analogies to explain what deep learning is, why it has become so popular, and how it relates to other machine learning approaches. Krohn has created a practical reference and tutorial for developers, data scientists, researchers, analysts, and students who want to start applying it. He illuminates theory with hands-on Python code in accompanying Jupyter notebooks. To help you progress quickly, he focuses on the versatile deep learning library Keras to nimbly construct efficient TensorFlow models; PyTorch, the leading alternative library, is also covered. You’ll gain a pragmatic understanding of all major deep learning approaches and their uses in applications ranging from machine vision and natural language processing to image generation and game-playing algorithms. Discover what makes deep learning systems unique, and the implications for practitioners Explore new tools that make deep learning models easier to build, use, and improve Master essential theory: artificial neurons, training, optimization, convolutional nets, recurrent nets, generative adversarial networks (GANs), deep reinforcement learning, and more Walk through building interactive deep learning applications, and move forward with your own artificial intelligence projects Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
Author | : Jun Yu |
Publisher | : John Wiley & Sons |
Total Pages | : 210 |
Release | : 2013-03-27 |
Genre | : Computers |
ISBN | : 1118559983 |
The integration of machine learning techniques and cartoon animation research is fast becoming a hot topic. This book helps readers learn the latest machine learning techniques, including patch alignment framework; spectral clustering, graph cuts, and convex relaxation; ensemble manifold learning; multiple kernel learning; multiview subspace learning; and multiview distance metric learning. It then presents the applications of these modern machine learning techniques in cartoon animation research. With these techniques, users can efficiently utilize the cartoon materials to generate animations in areas such as virtual reality, video games, animation films, and sport simulations
Author | : Vikas Chaudhary |
Publisher | : CRC Press |
Total Pages | : 177 |
Release | : 2021-12-07 |
Genre | : Computers |
ISBN | : 1000504344 |
Over the last decade, progress in deep learning has had a profound and transformational effect on many complex problems, including speech recognition, machine translation, natural language understanding, and computer vision. As a result, computers can now achieve human-competitive performance in a wide range of perception and recognition tasks. Many of these systems are now available to the programmer via a range of so-called cognitive services. More recently, deep reinforcement learning has achieved ground-breaking success in several complex challenges. This book makes an enormous contribution to this beautiful, vibrant area of study: an area that is developing rapidly both in breadth and depth. Deep learning can cope with a broader range of tasks (and perform those tasks to increasing levels of excellence). This book lays a good foundation for the core concepts and principles of deep learning in gaming and animation, walking you through the fundamental ideas with expert ease. This book progresses in a step-by-step manner. It reinforces theory with a full-fledged pedagogy designed to enhance students' understanding and offer them a practical insight into its applications. Also, some chapters introduce and cover novel ideas about how artificial intelligence (AI), deep learning, and machine learning have changed the world in gaming and animation. It gives us the idea that AI can also be applied in gaming, and there are limited textbooks in this area. This book comprehensively addresses all the aspects of AI and deep learning in gaming. Also, each chapter follows a similar structure so that students, teachers, and industry experts can orientate themselves within the text. There are few books in the field of gaming using AI. Deep Learning in Gaming and Animations teaches you how to apply the power of deep learning to build complex reasoning tasks. After being exposed to the foundations of machine and deep learning, you will use Python to build a bot and then teach it the game's rules. This book also focuses on how different technologies have revolutionized gaming and animation with various illustrations.
Author | : Mark H. Liu |
Publisher | : |
Total Pages | : 0 |
Release | : 2023-12 |
Genre | : COMPUTERS |
ISBN | : 9781003441281 |
The release of ChatGPT has kicked off an arms race in Machine Learning (ML), however ML has also been described as a black box and very hard to understand. Machine Learning, Animatedeases you into basic ML concepts and summarizes the learning process in three words: initialize, adjust and repeat. This is illustrated step by step with animation to show how machines learn: from initial parameter values to adjusting each step, to the final converged parameters and predictions. This book teaches readers to create their own neural networks with dense and convolutional layers, and use them to make binary and multi-category classifications. Readers will learn how to build deep learning game strategies and combine this with reinforcement learning, witnessing AI achieve super-human performance in Atari games such as Breakout, Space Invaders, Seaquest and Beam Rider. Written in a clear and concise style, illustrated with animations and images, this book is particularly appealing to readers with no background in computer science, mathematics or statistics. Access the book's repository at:https://github.com/markhliu/MLA
Author | : Mark Liu |
Publisher | : No Starch Press |
Total Pages | : 438 |
Release | : 2021-08-24 |
Genre | : Computers |
ISBN | : 1718501579 |
A project-based book that teaches beginning Python programmers how to build working, useful, and fun voice-controlled applications. This fun, hands-on book will take your basic Python skills to the next level as you build voice-controlled apps to use in your daily life. Starting with a Python refresher and an introduction to speech-recognition/text-to-speech functionalities, you’ll soon ease into more advanced topics, like making your own modules and building working voice-controlled apps. Each chapter scaffolds multiple projects that allow you to see real results from your code at a manageable pace, while end-of-chapter exercises strengthen your understanding of new concepts. You’ll design interactive games, like Connect Four and Tic-Tac-Toe, and create intelligent computer opponents that talk and take commands; you’ll make a real-time language translator, and create voice-activated financial-market apps that track the stocks or cryptocurrencies you are interested in. Finally, you’ll load all of these features into the ultimate virtual personal assistant – a conversational VPA that tells jokes, reads the news, and gives you hands-free control of your email, browser, music player, desktop files, and more. Along the way, you’ll learn how to: ● Build Python modules, implement animations, and integrate live data into an app ● Use web-scraping skills for voice-controlling podcasts, videos, and web searches ● Fine-tune the speech recognition to accept a variety of input ● Associate regular tasks like opening files and accessing the web with speech commands ● Integrate functionality from other programs into a single VPA with computational knowledge engines to answer almost any question Packed with cross-platform code examples to download, practice activities and exercises, and explainer images, you’ll quickly become proficient in Python coding in general and speech recognition/text to speech in particular.
Author | : Dale Lane |
Publisher | : No Starch Press |
Total Pages | : 290 |
Release | : 2021-01-19 |
Genre | : Computers |
ISBN | : 1718500572 |
A hands-on, application-based introduction to machine learning and artificial intelligence (AI) that guides young readers through creating compelling AI-powered games and applications using the Scratch programming language. Machine learning (also known as ML) is one of the building blocks of AI, or artificial intelligence. AI is based on the idea that computers can learn on their own, with your help. Machine Learning for Kids will introduce you to machine learning, painlessly. With this book and its free, Scratch-based, award-winning companion website, you'll see how easy it is to add machine learning to your own projects. You don't even need to know how to code! As you work through the book you'll discover how machine learning systems can be taught to recognize text, images, numbers, and sounds, and how to train your models to improve their accuracy. You'll turn your models into fun computer games and apps, and see what happens when they get confused by bad data. You'll build 13 projects step-by-step from the ground up, including: • Rock, Paper, Scissors game that recognizes your hand shapes • An app that recommends movies based on other movies that you like • A computer character that reacts to insults and compliments • An interactive virtual assistant (like Siri or Alexa) that obeys commands • An AI version of Pac-Man, with a smart character that knows how to avoid ghosts NOTE: This book includes a Scratch tutorial for beginners, and step-by-step instructions for every project. Ages 12+
Author | : Md Zia Uddin |
Publisher | : CRC Press |
Total Pages | : 264 |
Release | : 2024-08-30 |
Genre | : Computers |
ISBN | : 1040105467 |
This book is a practical guide for individuals interested in exploring and implementing smart home applications using Python. Comprising six chapters enriched with hands-on codes, it seamlessly navigates from foundational concepts to cutting-edge technologies, balancing theoretical insights and practical coding experiences. In short, it is a gateway to the dynamic intersection of Python programming, smart home technology, and advanced machine learning applications, making it an invaluable resource for those eager to explore this rapidly growing field. Key Features: Throughout the book, practicality takes precedence, with hands-on coding examples accompanying each concept to facilitate an interactive learning journey Striking a harmonious balance between theoretical foundations and practical coding, the book caters to a diverse audience, including smart home enthusiasts and researchers The content prioritizes real-world applications, ensuring readers can immediately apply the knowledge gained to enhance smart home functionalities Covering Python basics, feature extraction, deep learning, and XAI, the book provides a comprehensive guide, offering an overall understanding of smart home applications
Author | : Indranath Chatterjee |
Publisher | : |
Total Pages | : 356 |
Release | : 2021-12-22 |
Genre | : |
ISBN | : 9781681089423 |
Machine Learning and Its Application: A Quick Guide for Beginners aims to cover most of the core topics required for study in machine learning curricula included in university and college courses. The textbook introduces readers to central concepts in machine learning and artificial intelligence, which include the types of machine learning algorithms and the statistical knowledge required for devising relevant computer algorithms. The book also covers advanced topics such as deep learning and feature engineering. Key features: - 8 organized chapters on core concepts of machine learning for learners - Accessible text for beginners unfamiliar with complex mathematical concepts - Introductory topics are included, including supervised learning, unsupervised learning, reinforcement learning and predictive statistics - Advanced topics such as deep learning and feature engineering provide additional information - Introduces readers to python programming with examples of code for understanding and practice - Includes a summary of the text and a dedicated section for references Machine Learning and Its Application: A Quick Guide for Beginners is an essential book for students and learners who want to understand the basics of machine learning and equip themselves with the knowledge to write algorithms for intelligent data processing applications.