Machine Learning And Data Analytics For Predicting Managing And Monitoring Disease
Download Machine Learning And Data Analytics For Predicting Managing And Monitoring Disease full books in PDF, epub, and Kindle. Read online free Machine Learning And Data Analytics For Predicting Managing And Monitoring Disease ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Roy, Manikant |
Publisher | : IGI Global |
Total Pages | : 241 |
Release | : 2021-06-25 |
Genre | : Computers |
ISBN | : 1799871908 |
Data analytics is proving to be an ally for epidemiologists as they join forces with data scientists to address the scale of crises. Analytics examined from many sources can derive insights and be used to study and fight global outbreaks. Pandemic analytics is a modern way to combat a problem as old as humanity itself: the proliferation of disease. Machine Learning and Data Analytics for Predicting, Managing, and Monitoring Disease explores different types of data and discusses how to prepare data for analysis, perform simple statistical analyses, create meaningful data visualizations, predict future trends from data, and more by applying cutting edge technology such as machine learning and data analytics in the wake of the COVID-19 pandemic. Covering a range of topics such as mental health analytics during COVID-19, data analysis and machine learning using Python, and statistical model development and deployment, it is ideal for researchers, academicians, data scientists, technologists, data analysts, diagnosticians, healthcare professionals, computer scientists, and students.
Author | : Adam Bohr |
Publisher | : Academic Press |
Total Pages | : 385 |
Release | : 2020-06-21 |
Genre | : Computers |
ISBN | : 0128184396 |
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Author | : Mundada, Monica R. |
Publisher | : IGI Global |
Total Pages | : 293 |
Release | : 2021-12-17 |
Genre | : Computers |
ISBN | : 1799881636 |
Big data generates around us constantly from daily business, custom use, engineering, and science activities. Sensory data is collected from the internet of things (IoT) and cyber-physical systems (CPS). Merely storing such a massive amount of data is meaningless, as the key point is to identify, locate, and extract valuable knowledge from big data to forecast and support services. Such extracted valuable knowledge is usually referred to as smart data. It is vital to providing suitable decisions in business, science, and engineering applications. Deep Learning Applications for Cyber-Physical Systems provides researchers a platform to present state-of-the-art innovations, research, and designs while implementing methodological and algorithmic solutions to data processing problems and designing and analyzing evolving trends in health informatics and computer-aided diagnosis in deep learning techniques in context with cyber physical systems. Covering topics such as smart medical systems, intrusion detection systems, and predictive analytics, this text is essential for computer scientists, engineers, practitioners, researchers, students, and academicians, especially those interested in the areas of internet of things, machine learning, deep learning, and cyber-physical systems.
Author | : Milutinovi?, Veljko |
Publisher | : IGI Global |
Total Pages | : 296 |
Release | : 2022-03-11 |
Genre | : Computers |
ISBN | : 1799883523 |
Based on current literature and cutting-edge advances in the machine learning field, there are four algorithms whose usage in new application domains must be explored: neural networks, rule induction algorithms, tree-based algorithms, and density-based algorithms. A number of machine learning related algorithms have been derived from these four algorithms. Consequently, they represent excellent underlying methods for extracting hidden knowledge from unstructured data, as essential data mining tasks. Implementation of Machine Learning Algorithms Using Control-Flow and Dataflow Paradigms presents widely used data-mining algorithms and explains their advantages and disadvantages, their mathematical treatment, applications, energy efficient implementations, and more. It presents research of energy efficient accelerators for machine learning algorithms. Covering topics such as control-flow implementation, approximate computing, and decision tree algorithms, this book is an essential resource for computer scientists, engineers, students and educators of higher education, researchers, and academicians.
Author | : Karthikeyan, P. |
Publisher | : IGI Global |
Total Pages | : 326 |
Release | : 2022-09-30 |
Genre | : Computers |
ISBN | : 1668457245 |
Even though many data analytics tools have been developed in the past years, their usage in the field of cyber twin warrants new approaches that consider various aspects including unified data representation, zero-day attack detection, data sharing across threat detection systems, real-time analysis, sampling, dimensionality reduction, resource-constrained data processing, and time series analysis for anomaly detection. Further study is required to fully understand the opportunities, benefits, and difficulties of data analytics and the internet of things in today’s modern world. New Approaches to Data Analytics and Internet of Things Through Digital Twin considers how data analytics and the internet of things can be used successfully within the field of digital twin as well as the potential future directions of these technologies. Covering key topics such as edge networks, deep learning, intelligent data analytics, and knowledge discovery, this reference work is ideal for computer scientists, industry professionals, researchers, scholars, practitioners, academicians, instructors, and students.
Author | : Hasmat Malik |
Publisher | : Springer Nature |
Total Pages | : 513 |
Release | : 2021-02-14 |
Genre | : Technology & Engineering |
ISBN | : 9813344121 |
This book embodies principles and applications of advanced soft computing approaches in engineering, healthcare and allied domains directed toward the researchers aspiring to learn and apply intelligent data analytics techniques. The first part covers AI, machine learning and data analytics tools and techniques and their applications to the class of several hospital and health real-life problems. In the later part, the applications of AI, ML and data analytics shall be covered over the wide variety of applications in hospital, health, engineering and/or applied sciences such as the clinical services, medical image analysis, management support, quality analysis, bioinformatics, device analysis and operations. The book presents knowledge of experts in the form of chapters with the objective to introduce the theme of intelligent data analytics and discusses associated theoretical applications. At last, it presents simulation codes for the problems included in the book for better understanding for beginners.
Author | : Abhishek Swaroop |
Publisher | : Springer Nature |
Total Pages | : 686 |
Release | : 2023-12-29 |
Genre | : Technology & Engineering |
ISBN | : 9819965500 |
This book includes original unpublished contributions presented at the International Conference on Data Analytics and Management (ICDAM 2023), held at London Metropolitan University, London, UK, during June 2023. The book covers the topics in data analytics, data management, big data, computational intelligence, and communication networks. The book presents innovative work by leading academics, researchers, and experts from industry which is useful for young researchers and students. The book is divided into four volumes.
Author | : Wang, John |
Publisher | : IGI Global |
Total Pages | : 3296 |
Release | : 2023-01-20 |
Genre | : Computers |
ISBN | : 1799892212 |
Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians.
Author | : Neha Singh |
Publisher | : John Wiley & Sons |
Total Pages | : 276 |
Release | : 2024-07-30 |
Genre | : Computers |
ISBN | : 1394227965 |
Comprehensive resource covering tools and techniques used for predictive analytics with practical applications across various industries Intelligent Techniques for Predictive Data Analytics provides an in-depth introduction of the tools and techniques used for predictive analytics, covering applications in cyber security, network security, data mining, and machine learning across various industries. Each chapter offers a brief introduction on the subject to make the text accessible regardless of background knowledge. Readers will gain a clear understanding of how to use data processing, classification, and analysis to support strategic decisions, such as optimizing marketing strategies and customer relationship management and recommendation systems, improving general business operations, and predicting occurrence of chronic diseases for better patient management. Traditional data analytics uses dashboards to illustrate trends and outliers, but with large data sets, this process is labor-intensive and time-consuming. This book provides everything readers need to save time by performing deep, efficient analysis without human bias and time constraints. A section on current challenges in the field is also included. Intelligent Techniques for Predictive Data Analytics covers sample topics such as: Models to choose from in predictive modeling, including classification, clustering, forecast, outlier, and time series models Price forecasting, quality optimization, and insect and disease plant and monitoring in agriculture Fraud detection and prevention, credit scoring, financial planning, and customer analytics Big data in smart grids, smart grid analytics, and predictive smart grid quality monitoring, maintenance, and load forecasting Management of uncertainty in predictive data analytics and probable future developments in the field Intelligent Techniques for Predictive Data Analytics is an essential resource on the subject for professionals and researchers working in data science or data management seeking to understand the different models of predictive analytics, along with graduate students studying data science courses and professionals and academics new to the field.
Author | : Jeya Mala, D. |
Publisher | : IGI Global |
Total Pages | : 312 |
Release | : 2022-01-07 |
Genre | : Computers |
ISBN | : 1799891348 |
Internet of things (IoT) applications employed for healthcare generate a huge amount of data that needs to be analyzed to produce the expected reports. To accomplish this task, a cloud-based analytical solution is ideal in order to generate faster reports in comparison to the traditional way. Given the current state of the world in which every day IoT devices are developed to provide healthcare solutions, it is essential to consider the mechanisms used to collect and analyze the data to provide thorough reports. Integrating AI in IoT Analytics on the Cloud for Healthcare Applications applies artificial intelligence (AI) in edge analytics for healthcare applications, analyzes the impact of tools and techniques in edge analytics for healthcare, and discusses security solutions for edge analytics in healthcare IoT. Covering topics such as data analytics and next generation healthcare systems, it is ideal for researchers, academicians, technologists, IT specialists, data scientists, healthcare industries, IoT developers, data security analysts, educators, and students.