Logical Foundations of Proof Complexity

Logical Foundations of Proof Complexity
Author: Stephen Cook
Publisher: Cambridge University Press
Total Pages: 496
Release: 2010-01-25
Genre: Mathematics
ISBN: 1139486306

This book treats bounded arithmetic and propositional proof complexity from the point of view of computational complexity. The first seven chapters include the necessary logical background for the material and are suitable for a graduate course. The result is a uniform treatment of many systems in the literature.

Logical Foundations of Mathematics and Computational Complexity

Logical Foundations of Mathematics and Computational Complexity
Author: Pavel Pudlák
Publisher: Springer Science & Business Media
Total Pages: 699
Release: 2013-04-22
Genre: Mathematics
ISBN: 3319001191

The two main themes of this book, logic and complexity, are both essential for understanding the main problems about the foundations of mathematics. Logical Foundations of Mathematics and Computational Complexity covers a broad spectrum of results in logic and set theory that are relevant to the foundations, as well as the results in computational complexity and the interdisciplinary area of proof complexity. The author presents his ideas on how these areas are connected, what are the most fundamental problems and how they should be approached. In particular, he argues that complexity is as important for foundations as are the more traditional concepts of computability and provability. Emphasis is on explaining the essence of concepts and the ideas of proofs, rather than presenting precise formal statements and full proofs. Each section starts with concepts and results easily explained, and gradually proceeds to more difficult ones. The notes after each section present some formal definitions, theorems and proofs. Logical Foundations of Mathematics and Computational Complexity is aimed at graduate students of all fields of mathematics who are interested in logic, complexity and foundations. It will also be of interest for both physicists and philosophers who are curious to learn the basics of logic and complexity theory.

Proof Complexity

Proof Complexity
Author: Jan Krajíček
Publisher: Cambridge University Press
Total Pages: 533
Release: 2019-03-28
Genre: Computers
ISBN: 1108416845

Offers a self-contained work presenting basic ideas, classical results, current state of the art and possible future directions in proof complexity.

Principia Mathematica

Principia Mathematica
Author: Alfred North Whitehead
Publisher:
Total Pages: 688
Release: 1910
Genre: Logic, Symbolic and mathematical
ISBN:

Logic for Computer Science

Logic for Computer Science
Author: Jean H. Gallier
Publisher: Courier Dover Publications
Total Pages: 532
Release: 2015-06-18
Genre: Mathematics
ISBN: 0486780821

This advanced text for undergraduate and graduate students introduces mathematical logic with an emphasis on proof theory and procedures for algorithmic construction of formal proofs. The self-contained treatment is also useful for computer scientists and mathematically inclined readers interested in the formalization of proofs and basics of automatic theorem proving. Topics include propositional logic and its resolution, first-order logic, Gentzen's cut elimination theorem and applications, and Gentzen's sharpened Hauptsatz and Herbrand's theorem. Additional subjects include resolution in first-order logic; SLD-resolution, logic programming, and the foundations of PROLOG; and many-sorted first-order logic. Numerous problems appear throughout the book, and two Appendixes provide practical background information.

Computational Complexity

Computational Complexity
Author: Sanjeev Arora
Publisher: Cambridge University Press
Total Pages: 609
Release: 2009-04-20
Genre: Computers
ISBN: 0521424267

New and classical results in computational complexity, including interactive proofs, PCP, derandomization, and quantum computation. Ideal for graduate students.

Logical Foundations of Proof Complexity

Logical Foundations of Proof Complexity
Author: Stephen Cook
Publisher: Cambridge University Press
Total Pages: 496
Release: 2010-01-25
Genre: Mathematics
ISBN: 9780521517294

This book treats bounded arithmetic and propositional proof complexity from the point of view of computational complexity. The first seven chapters include the necessary logical background for the material and are suitable for a graduate course. Associated with each of many complexity classes are both a two-sorted predicate calculus theory, with induction restricted to concepts in the class, and a propositional proof system. The result is a uniform treatment of many systems in the literature, including Buss's theories for the polynomial hierarchy and many disparate systems for complexity classes such as AC0, AC0(m), TC0, NC1, L, NL, NC, and P.

Logical Foundations of Cyber-Physical Systems

Logical Foundations of Cyber-Physical Systems
Author: André Platzer
Publisher: Springer
Total Pages: 639
Release: 2018-08-31
Genre: Mathematics
ISBN: 9783319635873

Cyber-physical systems (CPSs) combine cyber capabilities, such as computation or communication, with physical capabilities, such as motion or other physical processes. Cars, aircraft, and robots are prime examples, because they move physically in space in a way that is determined by discrete computerized control algorithms. Designing these algorithms is challenging due to their tight coupling with physical behavior, while it is vital that these algorithms be correct because we rely on them for safety-critical tasks. This textbook teaches undergraduate students the core principles behind CPSs. It shows them how to develop models and controls; identify safety specifications and critical properties; reason rigorously about CPS models; leverage multi-dynamical systems compositionality to tame CPS complexity; identify required control constraints; verify CPS models of appropriate scale in logic; and develop an intuition for operational effects. The book is supported with homework exercises, lecture videos, and slides.

Alasdair Urquhart on Nonclassical and Algebraic Logic and Complexity of Proofs

Alasdair Urquhart on Nonclassical and Algebraic Logic and Complexity of Proofs
Author: Ivo Düntsch
Publisher: Springer Nature
Total Pages: 591
Release: 2021-09-24
Genre: Philosophy
ISBN: 3030714306

This book is dedicated to the work of Alasdair Urquhart. The book starts out with an introduction to and an overview of Urquhart’s work, and an autobiographical essay by Urquhart. This introductory section is followed by papers on algebraic logic and lattice theory, papers on the complexity of proofs, and papers on philosophical logic and history of logic. The final section of the book contains a response to the papers by Urquhart. Alasdair Urquhart has made extremely important contributions to a variety of fields in logic. He produced some of the earliest work on the semantics of relevant logic. He provided the undecidability of the logics R (of relevant implication) and E (of relevant entailment), as well as some of their close neighbors. He proved that interpolation fails in some of those systems. Urquhart has done very important work in complexity theory, both about the complexity of proofs in classical and some nonclassical logics. In pure algebra, he has produced a representation theorem for lattices and some rather beautiful duality theorems. In addition, he has done important work in the history of logic, especially on Bertrand Russell, including editing Volume four of Russell’s Collected Papers.