Logic-Based Methods for Optimization

Logic-Based Methods for Optimization
Author: John Hooker
Publisher: Wiley-Interscience
Total Pages: 528
Release: 2000-05-30
Genre: Mathematics
ISBN:

"Logic-Based Methods for Optimization develops for the first time a comprehensive conceptual framework for integrating optimization and constraint satisfaction, then goes a step further and shows how extending logical inference to optimization allows for more powerful as well as flexible modeling and solution techniques. Designed to be easily accessible to industry professionals and academics in both operations research and artificial intelligence, the book provides a wealth of examples as well as elegant techniques and modeling frameworks ready for implementation."--BOOK JACKET.

Optimization Methods for Logical Inference

Optimization Methods for Logical Inference
Author: Vijay Chandru
Publisher: John Wiley & Sons
Total Pages: 386
Release: 2011-09-26
Genre: Mathematics
ISBN: 1118031415

Merging logic and mathematics in deductive inference-an innovative, cutting-edge approach. Optimization methods for logical inference? Absolutely, say Vijay Chandru and John Hooker, two major contributors to this rapidly expanding field. And even though "solving logical inference problems with optimization methods may seem a bit like eating sauerkraut with chopsticks. . . it is the mathematical structure of a problem that determines whether an optimization model can help solve it, not the context in which the problem occurs." Presenting powerful, proven optimization techniques for logic inference problems, Chandru and Hooker show how optimization models can be used not only to solve problems in artificial intelligence and mathematical programming, but also have tremendous application in complex systems in general. They survey most of the recent research from the past decade in logic/optimization interfaces, incorporate some of their own results, and emphasize the types of logic most receptive to optimization methods-propositional logic, first order predicate logic, probabilistic and related logics, logics that combine evidence such as Dempster-Shafer theory, rule systems with confidence factors, and constraint logic programming systems. Requiring no background in logic and clearly explaining all topics from the ground up, Optimization Methods for Logical Inference is an invaluable guide for scientists and students in diverse fields, including operations research, computer science, artificial intelligence, decision support systems, and engineering.

Logic-Based Methods for Optimization

Logic-Based Methods for Optimization
Author: John Hooker
Publisher: John Wiley & Sons
Total Pages: 520
Release: 2011-09-28
Genre: Mathematics
ISBN: 1118031288

A pioneering look at the fundamental role of logic in optimizationand constraint satisfaction While recent efforts to combine optimization and constraintsatisfaction have received considerable attention, little has beensaid about using logic in optimization as the key to unifying thetwo fields. Logic-Based Methods for Optimization develops for thefirst time a comprehensive conceptual framework for integratingoptimization and constraint satisfaction, then goes a step furtherand shows how extending logical inference to optimization allowsfor more powerful as well as flexible modeling and solutiontechniques. Designed to be easily accessible to industryprofessionals and academics in both operations research andartificial intelligence, the book provides a wealth of examples aswell as elegant techniques and modeling frameworks ready forimplementation. Timely, original, and thought-provoking,Logic-Based Methods for Optimization: * Demonstrates the advantages of combining the techniques inproblem solving * Offers tutorials in constraint satisfaction/constraintprogramming and logical inference * Clearly explains such concepts as relaxation, cutting planes,nonserial dynamic programming, and Bender's decomposition * Reviews the necessary technologies for software developersseeking to combine the two techniques * Features extensive references to important computationalstudies * And much more

Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications

Fuzzy Logic Based in Optimization Methods and Control Systems and Its Applications
Author: Ali Sadollah
Publisher: BoD – Books on Demand
Total Pages: 98
Release: 2018-10-31
Genre: Computers
ISBN: 1789840678

Fuzzy logic models can be used to demonstrate human decision making in complex situations, and can therefore be an important tool in examining natural complexity. Moreover, fuzzy logic can be exploited to predict chaotic behaviors. But why is fuzzy logic so valuable? The idea of fuzzy logic has been around since 1965, and since its introduction thousands of applications of fuzzy logic have been implemented in industry, medicine, and even economic applications and patents. How did this invaluable theory achieve such great success? This book aims to compare well-known and well-used membership functions to demonstrate how to select the best membership functions and show when and why to utilize them. This book also demonstrates how different fields of studies utilize fuzzy logic showing its wide reach and relevance.

Data Mining and Knowledge Discovery via Logic-Based Methods

Data Mining and Knowledge Discovery via Logic-Based Methods
Author: Evangelos Triantaphyllou
Publisher: Springer Science & Business Media
Total Pages: 371
Release: 2010-06-08
Genre: Computers
ISBN: 144191630X

The importance of having ef cient and effective methods for data mining and kn- ledge discovery (DM&KD), to which the present book is devoted, grows every day and numerous such methods have been developed in recent decades. There exists a great variety of different settings for the main problem studied by data mining and knowledge discovery, and it seems that a very popular one is formulated in terms of binary attributes. In this setting, states of nature of the application area under consideration are described by Boolean vectors de ned on some attributes. That is, by data points de ned in the Boolean space of the attributes. It is postulated that there exists a partition of this space into two classes, which should be inferred as patterns on the attributes when only several data points are known, the so-called positive and negative training examples. The main problem in DM&KD is de ned as nding rules for recognizing (cl- sifying) new data points of unknown class, i. e. , deciding which of them are positive and which are negative. In other words, to infer the binary value of one more attribute, called the goal or class attribute. To solve this problem, some methods have been suggested which construct a Boolean function separating the two given sets of positive and negative training data points.

Optimization Models

Optimization Models
Author: Giuseppe C. Calafiore
Publisher: Cambridge University Press
Total Pages: 651
Release: 2014-10-31
Genre: Business & Economics
ISBN: 1107050871

This accessible textbook demonstrates how to recognize, simplify, model and solve optimization problems - and apply these principles to new projects.

Optimization and Computational Logic

Optimization and Computational Logic
Author: Kenneth McAloon
Publisher: Wiley-Interscience
Total Pages: 562
Release: 1996-09-14
Genre: Business & Economics
ISBN:

This book/software package uniquely integrates logic and operations research. Its broad coverage provides concepts, templates, and the tools for the task of attacking difficult problems which are repeatedly encountered in decision making. The first part deals with linear programming and the second with search techniques for combinatorially hard problems. The applications discussed include product mix problems, pattern recognition, classical and probabilistic logic, financial planning, and expert systems.

Logic Synthesis and Verification

Logic Synthesis and Verification
Author: Soha Hassoun
Publisher: Springer Science & Business Media
Total Pages: 474
Release: 2001-11-30
Genre: Computers
ISBN: 9780792376064

Research and development of logic synthesis and verification have matured considerably over the past two decades. Many commercial products are available, and they have been critical in harnessing advances in fabrication technology to produce today's plethora of electronic components. While this maturity is assuring, the advances in fabrication continue to seemingly present unwieldy challenges. Logic Synthesis and Verification provides a state-of-the-art view of logic synthesis and verification. It consists of fifteen chapters, each focusing on a distinct aspect. Each chapter presents key developments, outlines future challenges, and lists essential references. Two unique features of this book are technical strength and comprehensiveness. The book chapters are written by twenty-eight recognized leaders in the field and reviewed by equally qualified experts. The topics collectively span the field. Logic Synthesis and Verification fills a current gap in the existing CAD literature. Each chapter contains essential information to study a topic at a great depth, and to understand further developments in the field. The book is intended for seniors, graduate students, researchers, and developers of related Computer-Aided Design (CAD) tools. From the foreword: "The commercial success of logic synthesis and verification is due in large part to the ideas of many of the authors of this book. Their innovative work contributed to design automation tools that permanently changed the course of electronic design." by Aart J. de Geus, Chairman and CEO, Synopsys, Inc.

Integrated Methods for Optimization

Integrated Methods for Optimization
Author: John N. Hooker
Publisher: Springer Science & Business Media
Total Pages: 655
Release: 2011-11-13
Genre: Business & Economics
ISBN: 146141900X

The first edition of Integrated Methods for Optimization was published in January 2007. Because the book covers a rapidly developing field, the time is right for a second edition. The book provides a unified treatment of optimization methods. It brings ideas from mathematical programming (MP), constraint programming (CP), and global optimization (GO)into a single volume. There is no reason these must be learned as separate fields, as they normally are, and there are three reasons they should be studied together. (1) There is much in common among them intellectually, and to a large degree they can be understood as special cases of a single underlying solution technology. (2) A growing literature reports how they can be profitably integrated to formulate and solve a wide range of problems. (3) Several software packages now incorporate techniques from two or more of these fields. The book provides a unique resource for graduate students and practitioners who want a well-rounded background in optimization methods within a single course of study. Engineering students are a particularly large potential audience, because engineering optimization problems often benefit from a combined approach—particularly where design, scheduling, or logistics are involved. The text is also of value to those studying operations research, because their educational programs rarely cover CP, and to those studying computer science and artificial intelligence (AI), because their curric ula typically omit MP and GO. The text is also useful for practitioners in any of these areas who want to learn about another, because it provides a more concise and accessible treatment than other texts. The book can cover so wide a range of material because it focuses on ideas that arerelevant to the methods used in general-purpose optimization and constraint solvers. The book focuses on ideas behind the methods that have proved useful in general-purpose optimization and constraint solvers, as well as integrated solvers of the present and foreseeable future. The second edition updates results in this area and includes several major new topics: Background material in linear, nonlinear, and dynamic programming. Network flow theory, due to its importance in filtering algorithms. A chapter on generalized duality theory that more explicitly develops a unifying primal-dual algorithmic structure for optimization methods. An extensive survey of search methods from both MP and AI, using the primal-dual framework as an organizing principle. Coverage of several additional global constraints used in CP solvers. The book continues to focus on exact as opposed to heuristic methods. It is possible to bring heuristic methods into the unifying scheme described in the book, and the new edition will retain the brief discussion of how this might be done.

Algorithms for Optimization

Algorithms for Optimization
Author: Mykel J. Kochenderfer
Publisher: MIT Press
Total Pages: 521
Release: 2019-03-12
Genre: Computers
ISBN: 0262039427

A comprehensive introduction to optimization with a focus on practical algorithms for the design of engineering systems. This book offers a comprehensive introduction to optimization with a focus on practical algorithms. The book approaches optimization from an engineering perspective, where the objective is to design a system that optimizes a set of metrics subject to constraints. Readers will learn about computational approaches for a range of challenges, including searching high-dimensional spaces, handling problems where there are multiple competing objectives, and accommodating uncertainty in the metrics. Figures, examples, and exercises convey the intuition behind the mathematical approaches. The text provides concrete implementations in the Julia programming language. Topics covered include derivatives and their generalization to multiple dimensions; local descent and first- and second-order methods that inform local descent; stochastic methods, which introduce randomness into the optimization process; linear constrained optimization, when both the objective function and the constraints are linear; surrogate models, probabilistic surrogate models, and using probabilistic surrogate models to guide optimization; optimization under uncertainty; uncertainty propagation; expression optimization; and multidisciplinary design optimization. Appendixes offer an introduction to the Julia language, test functions for evaluating algorithm performance, and mathematical concepts used in the derivation and analysis of the optimization methods discussed in the text. The book can be used by advanced undergraduates and graduate students in mathematics, statistics, computer science, any engineering field, (including electrical engineering and aerospace engineering), and operations research, and as a reference for professionals.