Localization of Nilpotent Groups and Spaces

Localization of Nilpotent Groups and Spaces
Author: Peter Hilton
Publisher: Elsevier
Total Pages: 167
Release: 2016-06-03
Genre: Mathematics
ISBN: 1483258742

North-Holland Mathematics Studies, 15: Localization of Nilpotent Groups and Spaces focuses on the application of localization methods to nilpotent groups and spaces. The book first discusses the localization of nilpotent groups, including localization theory of nilpotent groups, properties of localization in N, further properties of localization, actions of a nilpotent group on an abelian group, and generalized Serre classes of groups. The book then examines homotopy types, as well as mixing of homotopy types, localizing H-spaces, main (pullback) theorem, quasifinite nilpotent spaces, localization of nilpotent complexes, and nilpotent spaces. The manuscript takes a look at the applications of localization theory, including genus and H-spaces, finite H-spaces, and non-cancellation phenomena. The publication is a vital source of data for mathematicians and researchers interested in the localization of nilpotent groups and spaces.

Algebraic Topology: New Trends in Localization and Periodicity

Algebraic Topology: New Trends in Localization and Periodicity
Author: Carles Broto
Publisher: Birkhäuser
Total Pages: 405
Release: 2012-12-06
Genre: Mathematics
ISBN: 3034890184

Central to this collection of papers are new developments in the general theory of localization of spaces. This field has undergone tremendous change of late and is yielding new insight into the mysteries of classical homotopy theory. The present volume comprises the refereed articles submitted at the Conference on Algebraic Topology held in Sant Feliu de Guíxols, Spain, in June 1994. Several comprehensive articles on general localization clarify the basic tools and give a report on the state of the art in the subject matter. The text is therefore accessible not only to the professional mathematician but also to the advanced student.

Crystallographic Groups and Their Generalizations

Crystallographic Groups and Their Generalizations
Author: Paul Igodt
Publisher: American Mathematical Soc.
Total Pages: 330
Release: 2000
Genre: Mathematics
ISBN: 082182001X

This volume contains articles written by the invited speakers and workshop participants from the conference on "Crystallographic Groups and Their Generalizations", held at Katholieke Universiteit Leuven, Kortrijk (Belgium). Presented are recent developments and open problems. Topics include the theory of affine structures and polynomial structures, affine Schottky groups and crooked tilings, theory and problems on the geometry of finitely generated solvable groups, flat Lorentz 3-manifolds and Fuchsian groups, filiform Lie algebras, hyperbolic automorphisms and Anosov diffeomorphisms on infra-nilmanifolds, localization theory of virtually nilpotent groups and aspherical spaces, projective varieties, and results on affine appartment systems. Participants delivered high-level research mathematics and a discussion was held forum for new researchers. The survey results and original papers contained in this volume offer a comprehensive view of current developments in the field.

Homotopy Limits, Completions and Localizations

Homotopy Limits, Completions and Localizations
Author: A. K. Bousfield
Publisher: Springer
Total Pages: 355
Release: 2009-03-20
Genre: Mathematics
ISBN: 3540381171

The main purpose of part I of these notes is to develop for a ring R a functional notion of R-completion of a space X. For R=Zp and X subject to usual finiteness condition, the R-completion coincides up to homotopy, with the p-profinite completion of Quillen and Sullivan; for R a subring of the rationals, the R-completion coincides up to homotopy, with the localizations of Quillen, Sullivan and others. In part II of these notes, the authors have assembled some results on towers of fibrations, cosimplicial spaces and homotopy limits which were needed in the discussions of part I, but which are of some interest in themselves.

More Concise Algebraic Topology

More Concise Algebraic Topology
Author: J. P. May
Publisher: University of Chicago Press
Total Pages: 544
Release: 2012-02
Genre: Mathematics
ISBN: 0226511782

With firm foundations dating only from the 1950s, algebraic topology is a relatively young area of mathematics. There are very few textbooks that treat fundamental topics beyond a first course, and many topics now essential to the field are not treated in any textbook. J. Peter May’s A Concise Course in Algebraic Topology addresses the standard first course material, such as fundamental groups, covering spaces, the basics of homotopy theory, and homology and cohomology. In this sequel, May and his coauthor, Kathleen Ponto, cover topics that are essential for algebraic topologists and others interested in algebraic topology, but that are not treated in standard texts. They focus on the localization and completion of topological spaces, model categories, and Hopf algebras. The first half of the book sets out the basic theory of localization and completion of nilpotent spaces, using the most elementary treatment the authors know of. It makes no use of simplicial techniques or model categories, and it provides full details of other necessary preliminaries. With these topics as motivation, most of the second half of the book sets out the theory of model categories, which is the central organizing framework for homotopical algebra in general. Examples from topology and homological algebra are treated in parallel. A short last part develops the basic theory of bialgebras and Hopf algebras.

JMSJ

JMSJ
Author: Nihon Sūgakkai
Publisher:
Total Pages: 636
Release: 2006
Genre: Mathematics
ISBN:

Homotopy Theory of Function Spaces and Related Topics

Homotopy Theory of Function Spaces and Related Topics
Author: Yves Félix
Publisher: American Mathematical Soc.
Total Pages: 246
Release: 2010
Genre: Mathematics
ISBN: 0821849298

This volume contains the proceedings of the Workshop on Homotopy Theory of Function Spaces and Related Topics, which was held at the Mathematisches Forschungsinstitut Oberwolfach, in Germany, from April 5-11, 2009. This volume contains fourteen original research articles covering a broad range of topics that include: localization and rational homotopy theory, evaluation subgroups, free loop spaces, Whitehead products, spaces of algebraic maps, gauge groups, loop groups, operads, and string topology. In addition to reporting on various topics in the area, this volume is supposed to facilitate the exchange of ideas within Homotopy Theory of Function Spaces, and promote cross-fertilization between Homotopy Theory of Function Spaces and other areas. With these latter aims in mind, this volume includes a survey article which, with its extensive bibliography, should help bring researchers and graduate students up to speed on activity in this field as well as a problems list, which is an expanded and edited version of problems discussed in sessions held at the conference. The problems list is intended to suggest directions for future work.