Nonlinear Vibrations

Nonlinear Vibrations
Author: American Society of Mechanical Engineers. Winter Meeting
Publisher: American Society of Civil Engineers
Total Pages: 184
Release: 1992
Genre: Mathematics
ISBN:

IUTAM Symposium on Nonlinear Stochastic Dynamics

IUTAM Symposium on Nonlinear Stochastic Dynamics
Author: N. Sri Namachchivaya
Publisher: Springer Science & Business Media
Total Pages: 498
Release: 2003-11-30
Genre: Mathematics
ISBN: 9781402014710

Non-linear stochastic systems are at the center of many engineering disciplines and progress in theoretical research had led to a better understanding of non-linear phenomena. This book provides information on new fundamental results and their applications which are beginning to appear across the entire spectrum of mechanics. The outstanding points of these proceedings are Coherent compendium of the current state of modelling and analysis of non-linear stochastic systems from engineering, applied mathematics and physics point of view. Subject areas include: Multiscale phenomena, stability and bifurcations, control and estimation, computational methods and modelling. For the Engineering and Physics communities, this book will provide first-hand information on recent mathematical developments. The applied mathematics community will benefit from the modelling and information on various possible applications.

Bifurcation and Symmetry

Bifurcation and Symmetry
Author: BÖHMER
Publisher: Birkhäuser
Total Pages: 323
Release: 2013-03-08
Genre: Science
ISBN: 3034875363

Symmetry is a property which occurs throughout nature and it is therefore natural that symmetry should be considered when attempting to model nature. In many cases, these models are also nonlinear and it is the study of nonlinear symmetric models that has been the basis of much recent work. Although systematic studies of nonlinear problems may be traced back at least to the pioneering contributions of Poincare, this remains an area with challenging problems for mathematicians and scientists. Phenomena whose models exhibit both symmetry and nonlinearity lead to problems which are challenging and rich in complexity, beauty and utility. In recent years, the tools provided by group theory and representation theory have proven to be highly effective in treating nonlinear problems involving symmetry. By these means, highly complex situations may be decomposed into a number of simpler ones which are already understood or are at least easier to handle. In the realm of numerical approximations, the systematic exploitation of symmetry via group repre sentation theory is even more recent. In the hope of stimulating interaction and acquaintance with results and problems in the various fields of applications, bifurcation theory and numerical analysis, we organized the conference and workshop Bifurcation and Symmetry: Cross Influences between Mathematics and Applications during June 2-7,8-14, 1991 at the Philipps University of Marburg, Germany.

Introduction to Mathematical Systems Theory

Introduction to Mathematical Systems Theory
Author: J.C. Willems
Publisher: Springer Science & Business Media
Total Pages: 446
Release: 2013-11-11
Genre: Mathematics
ISBN: 1475729537

Using the behavioural approach to mathematical modelling, this book views a system as a dynamical relation between manifest and latent variables. The emphasis is on dynamical systems that are represented by systems of linear constant coefficients. The first part analyses the structure of the set of trajectories generated by such dynamical systems, and derives the conditions for two systems of differential equations to be equivalent in the sense that they define the same behaviour. In addition the memory structure of the system is analysed through state space models. The second part of the book is devoted to a number of important system properties, notably controllability, observability, and stability. In the third part, control problems are considered, in particular stabilisation and pole placement questions. Suitable for advanced undergraduate or beginning graduate students in mathematics and engineering, this text contains numerous exercises, including simulation problems, and examples, notably of mechanical systems and electrical circuits.

Mechanics of Materials and Interfaces

Mechanics of Materials and Interfaces
Author: Chandrakant S. Desai
Publisher: CRC Press
Total Pages: 711
Release: 2000-12-20
Genre: Science
ISBN: 1420041916

The disturbed state concept (DSC) is a unified, constitutive modelling approach for engineering materials that allows for elastic, plastic, and creep strains, microcracking and fracturing, stiffening or healing, all within a single, hierarchical framework. Its capabilities go well beyond other available material models yet lead to significant simpl

Handbook of Dynamical Systems

Handbook of Dynamical Systems
Author: B. Fiedler
Publisher: Gulf Professional Publishing
Total Pages: 1099
Release: 2002-02-21
Genre: Science
ISBN: 0080532845

This handbook is volume II in a series collecting mathematical state-of-the-art surveys in the field of dynamical systems. Much of this field has developed from interactions with other areas of science, and this volume shows how concepts of dynamical systems further the understanding of mathematical issues that arise in applications. Although modeling issues are addressed, the central theme is the mathematically rigorous investigation of the resulting differential equations and their dynamic behavior. However, the authors and editors have made an effort to ensure readability on a non-technical level for mathematicians from other fields and for other scientists and engineers. The eighteen surveys collected here do not aspire to encyclopedic completeness, but present selected paradigms. The surveys are grouped into those emphasizing finite-dimensional methods, numerics, topological methods, and partial differential equations. Application areas include the dynamics of neural networks, fluid flows, nonlinear optics, and many others.While the survey articles can be read independently, they deeply share recurrent themes from dynamical systems. Attractors, bifurcations, center manifolds, dimension reduction, ergodicity, homoclinicity, hyperbolicity, invariant and inertial manifolds, normal forms, recurrence, shift dynamics, stability, to namejust a few, are ubiquitous dynamical concepts throughout the articles.

Recent Advances in Optimization and its Applications in Engineering

Recent Advances in Optimization and its Applications in Engineering
Author: Moritz Diehl
Publisher: Springer Science & Business Media
Total Pages: 535
Release: 2010-09-21
Genre: Technology & Engineering
ISBN: 3642125980

Mathematical optimization encompasses both a rich and rapidly evolving body of fundamental theory, and a variety of exciting applications in science and engineering. The present book contains a careful selection of articles on recent advances in optimization theory, numerical methods, and their applications in engineering. It features in particular new methods and applications in the fields of optimal control, PDE-constrained optimization, nonlinear optimization, and convex optimization. The authors of this volume took part in the 14th Belgian-French-German Conference on Optimization (BFG09) organized in Leuven, Belgium, on September 14-18, 2009. The volume contains a selection of reviewed articles contributed by the conference speakers as well as three survey articles by plenary speakers and two papers authored by the winners of the best talk and best poster prizes awarded at BFG09. Researchers and graduate students in applied mathematics, computer science, and many branches of engineering will find in this book an interesting and useful collection of recent ideas on the methods and applications of optimization.